首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The superconducting properties and AC/DC magnetic properties of YBa2Cu3−x Zn x O7−δ , (x=0.0, 0.01, 0.03, 0.05, 0.10 and 0.15) compounds were investigated. Samples were synthesized through solid-state reaction route. X-ray diffraction data confirms the single-phase orthorhombic/tetragonal crystallization for the studied samples. Thermo-Gravimetric Analysis (TGA) was done for pure and Zn-doped YBa2Cu3O7−δ (YBCO) samples. Results reveal that at higher dopant levels the doped samples are more oxygen-deficient than the undoped ones. The superconducting properties of YBa2Cu3−x Zn x O7−δ system always enhance with addition of oxygen to Cu–O chains, which causes enhancement of superconducting carrier density together with orthorhombic structure. Zn substitution causes an overall reduction of superconducting condensation energy with systematic degradation of superconducting properties like T c and J c. This occurs via induced non-homogeneity of hole carrier density created by extended nature of perturbation on electronic structure in CuO2 planes and its weak-link type behavior. AC susceptibility measurement reveals that Zn doping reduces the inter-granular couplings. Scanning Electron Microscope (SEM) images indicate that increment of average grain size with increasing of Zn concentration.  相似文献   

2.
This paper reports a study on the mechanical and tribological properties of ab- and a (b) c?planes of YBa2Cu3O7?δ single crystals. The single crystals were grown using a CuO-BaO self-flux method. The oxygenation effect on the mechanical and tribological properties of ab- and a (b) c?planes is reported. For the ab- plane, the hardness and elastic modulus were around 6 and 50 GPa, respectively. In this case, significant differences were not observed among the hardness and elastic modulus at different oxygenation states. However, the hardness and elastic modulus for as-grown and oxygenated YBa2Cu3O7?δ single crystals were different from that of the a (b) c?plane, and were observed to be slightly higher for the as-grown than for the oxygenated samples. For as-grown and oxygenated samples, we observed hardness values around 4.7 and 2.0 GPa, respectively. Regarding the elastic modulus, the values were 75 and 40 GPa, respectively. The indentation fracture toughness values on the ab- plane for the as-grown and oxygenated YBa2Cu3O7?δ single crystal were 3.7 ± 1.2 and 2.9 ± 1.2 MPa m1/2, respectively. For the ab- plane, the scratch resistance of the as-grown sample was higher than that of the oxygenated sample and the scratches under load were deeper for the oxygenated sample. As regards the a (b) c?plane, the scar features were seemingly constant through all the scratch lengths and the scratches under load were deeper and larger for the oxygenated than that for the as-grown sample.  相似文献   

3.
Improving the thickness of superconducting layer in coated conductors is an effective way to enhance its critical current. In this work, tri-layer YBCO/YBCO/YDyBCO films were successfully deposited on buffered Hastelloy substrate using the multi-coating lowfluorine metal-organic decomposition (LF-MOD) method and the thickness of the films can be up to 2.4 μ m. The effects of high-temperature annealing time on microstructures and superconducting properties of the films were systematically studied. Energy dispersive X-ray spectroscopy (EDS) results reveal that there remains a large amount of F element in the upper layer of the film when the annealing time is too short. With increasing the annealing time, the fluoride-containing precursor converts to YBCO grains completely. But the coarsening of grains appeared, and the critical current density (J c) of the film dropped slightly when the annealing time is too long. The cross-sectional scanning electron microscope (SEM) image and EDS plane analysis were applied to investigate the microstructure and element distribution of the final triple-layer YBCO films, respectively. The critical current of the final YBCO superconducting film could reach 316 A (77 k, self-field) for 1.2-cm-wide tapes with the optimal annealing conditions.  相似文献   

4.
A method for evaluation of the critical temperature T c and the width of the superconducting transition ΔT c in HTSC single crystals has been developed. By this method, the first derivative of the temperature dependence of the resistivity, \(\frac{\partial \rho (T)}{\partial T}\), is constructed. A technique for synthesis of YBa2Cu3O7?x single crystals with highly reproducible physical-mechanical properties has been described. A standard sample with T c=94 K and ΔT c=0.25 K has been synthesized and certified.  相似文献   

5.
The aim of this research was to fabricate YBa2Cu3O7?δ (YBCO) superconductor composite with graphene oxide nanosheets and to study the effect of the graphene oxide nanosheets on YBCO superconductor properties. For this purpose, the samples of pure superconductor and superconductor composite with 0.001, 0.01, and 0.1 wt.% graphene oxide were synthesized. First, graphite oxide was made by Hummer’s chemical method; after that, graphene oxide nanosheets were produced by bath-keeper ultrasonic. Then, different amounts of graphene oxide were added to the process of superconductor fabrication, which was made by solid-state reaction method. The samples were characterized and studied by Meissner effect test, XRD analysis, FESEM imaging, EDX measurement, and ac magnetic susceptibility. The critical current density (Jc) of samples was measured by four probes method. The results showed that by increasing the weight ratio of graphene oxide, Jc and Tc decrease.  相似文献   

6.
The effect of graphene (G) addition on YBa2Cu3O7?δ(G)x (x =?0 ? 0.03 wt%) has been studied using the X-ray diffraction method, scanning electron microscopy, electrical resistance versus temperature, transport critical current density Jc, and AC susceptibility measurements. XRD patterns showed single-phase YBa2Cu3O7?δ (YBCO) for all samples. SEM micrographs showed filling of the voids between YBa2Cu3O7?δ grains as graphene was added. The temperature-dependent electrical resistance curves showed metallic normal state behavior and onset transition temperature Tconset between 90 and 92 K for all samples. AC susceptibility measurement showed transition temperature \(T_{\mathrm {c} \chi ^{\prime }}\) between 90 and 93 K. \(T_{\mathrm {c} \chi ^{\prime }}\) was maintained or improved slightly as graphene was added. The x =?0.001 wt% showed the highest Jc, i.e., 2750 A cm?2 at 77 K and 5570 mA cm?2 at 30 K which was 13 and 40 times higher than that of the non-added YBCO, respectively. The peak temperature Tp of the imaginary part of the susceptibility χ was around 78–82 K for all samples indicating grain coupling was not weakened as graphene was added.  相似文献   

7.
The effect of CdTe addition on YBa2Cu3O7?δ (CdTe) x (x = 0–0.10) has been studied. XRD patterns showed the presence of impurities including CdTe for x ≥ 0.05 wt%. The resistance versus temperature curves showed metallic behavior for all samples. The onset temperature T c onset for all samples is between 90 and 92 K. The superconducting transition width, ΔT c = 4 K for all samples except for x = 0.1 wt% where ΔT c = 6 K. The superconducting transition determined by AC susceptibility measurement also showed little change in \(T_{\mathrm {c}\chi ^{\prime }}\) (between 89 and 92 K). However, the peak temperature T p of the imaginary part of the susceptibility χ″, showed a drastic decrease for samples with x > 0.05 wt%. This indicated that the superconducting grains were strongly decoupled for x > 0.05 wt% due to the impurities as observed in the XRD pattern. The intergrain critical current density, J c at T p for the x = 0 sample is J c (82 K) = 17 A cm?2. These results can be useful in the fabrication of semiconductor/YBCO superconductor hybrid systems.  相似文献   

8.
YBa2Cu3 O 7?δ (YBCO) films with BaTiO3 (BTO) nanostructures were prepared by using the precursor solutions with different cationic molar ratios of Y:Ba:Cu = 1.0:1.6–2.0:3.0 in the TFA-MOD process. These YBCO films were deposited on (00 l)-oriented LaAlO3 single-crystal substrates using a spin coater. The high superconducting critical current density (J C) (77 K, self-filed) of more than 10 MA/cm2 for the final BTO-doped YBCO film was obtained. Moreover, the effect of different Ba/Y molar ratios in the precursor solution on superconducting properties of BTO-doped YBCO films was investigated. Compared with the BTO-doped YBCO film deposited by using the precursor solutions with Ba/Y molar ratio of 2.0, an enhancement of J C in a magnetic field for the film from the solution with Ba/Y molar ratio of 1.9 was achieved. For Ba/Y molar ratios of 1.6 and 1.7, a reduction of J C in a magnetic field occurred. The J C enhancement may be mainly ascribed to the enhanced flux pinning by the Y2Cu2 O 5 nanostructures with the optimal number dispersing in YBCO matrix.  相似文献   

9.
Polyethyleneimine (PEI) with an amount of –NH2 groups used in precursor solution could effectively reduce Cu2+ volatilization during the pyrolysis process. Thermogravimetric analysis shows that the temperature window of low-temperature pyrolysis for precursor solution with PEI (PEI-YBCO) is widened significantly. The slower pyrolysis process can enrich Cu2+ and improve critical current density (Jc) of PEI-YBCO films. The highest Jc is 3.03 MA/cm2 at 77 K when the amount of PEI is 0.5 g/10 mL and the film thickness is 400 nm. Then the thickness increases from 0.4 to 2.0 μm by changing the coating times. The Jc values of PEI-YBCO films decrease gradually with the thickness increase. However, the critical current (Ic) can be up to 197 A/cm (at 77 K, self-field) and Jc can still keep 1.68 MA/cm2 at 1.2 μm.  相似文献   

10.
The densification of ceramic compacts of YBa2Cu3O7−x (123) was studied with a vertical dilatometer. The runs effected under isothermal conditions (ISO) covered the 920–970C range and were performed under static air atmosphere. Also, controlled heating rate (CHR) runs, from about 800 to 1050C, were conducted at 5C/min under either flowing oxygen or static air. The ISO data could be satisfactorily fitted by the solution-precipitation (SP) model giving an activation enthalpy of 221 kJ/mol. Furthermore, the CHR data for 920–970C was also fitted with the same model giving 207 kJ/mol as the activation energy. From analysis of CHR data, the initial stage sintering is driven by solid state sintering between 827–894C (823–908C in O2). Then, in the interval 902–920C (914–934C in O2) the intermediate stage driven by grain growth (GG), competes with the rearrangement process associated to the presence of a liquid phase. This last process applied because the next sintering stage in the range 922–970C (938–990C in O2 flow) could be fitted by the SP model with an activation enthalpy of 207 kJ/mol (229 kJ/mol in O2). In the range 972–995C (990–1014C in O2), the solid state (GG) intermediate stage mechanism and/or viscous flow competes with the SP process.  相似文献   

11.
Series of (YBa2Cu3O7−δ )1−x (Al2O3) x samples have been prepared using solid state reaction method. Various amount of nano-sized Al2O3 particles (∼50 nm) were added with (x=0, 0.005, 0.01, 0.02, and 0.05). The microstructure and the morphology of the polycrystalline samples have been characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The magneto-transport properties of these samples were investigated using resistance–temperature (RT) and current–voltage (IV) characteristics. All samples showed an orthorhombic structure with a tendency to transformation to tetragonal phase at higher levels of nanoparticles addition. The morphology of the surface of pure samples reveals a considerable number of weak-links, randomly oriented and clean grain boundaries. While in samples with nano inclusions, grain boundaries were filled with nanosized particle and have less number of weak-links. Significant enhancement of the superconducting critical current density J c in applied magnetic field was observed due to nano Al2O3 inclusions. However, further increase in the value of x decreases the transition temperature T c and the critical current density J c . These results were interpreted in terms of the flux pinning mechanisms in granular superconducting networks which leads to a better basic understanding of the performance of YBCO system in high applied magnetic fields.  相似文献   

12.
Superconducting Cu x TaSe2(x=0.05, 0.15) and Cu0.15TaSe2?x S x (x=0, 0.5, 1, 1.5) single crystals have been systematically fabricated by a chemical vapor transport method. It is found that the double doping in TaSe2, i.e., the simultaneous intercalation of Cu and substitution of Se by S, can substantially enhance the superconducting transition temperature. Transport property measurements give evidence of the coexistence and competition of charge density wave state and superconductivity in Cu x TaSe2 which provide meaningful information to understand the complex electronic states in this system. The parallel shift and the fan-shape broadening behaviors are observed in the superconducting transition curves under magnetic fields of Cu0.15TaSeS and TaSeS, respectively, indicating an increase of coherence length and suppression of superconducting fluctuation induced by copper intercalation.  相似文献   

13.
We have studied the electrical properties of high-Tc superconductor YBa2Cu3O7?x films obtained by the ion-plasma deposition technique on sapphire substrates. Dependences of the surface resistance and the critical current density on the film thickness are determined.  相似文献   

14.
The formation of an Y2O3-Yb2O3 solid solution (8 mol % Yb2O3) during the thermal decomposition of (Y,Yb)2(CO3)3 · 2H2O mixed carbonates obtained by coprecipitation from a nitrate solution has been studied by X-ray diffraction, thermal analysis, and optical microscopy. The results demonstrate that the formation of a cubic yttria-based solid solution begins in the range 470–500°C and reaches completion at temperatures above 1100°C. The unit-cell parameter a of the cubic solid solution and the X-ray density of the corresponding ceramic are 10.5910 Å and 5.349 g/cm3, which corresponds to the intended chemical composition of the isovalent substitutional solid solution: Y1.84Yb0.16O3.  相似文献   

15.
Magnetocaloric properties of La x MnO 3?δ films in the composition range 0.75 ≤ x ≤ 1 near phase transition from a ferromagnetic to a paramagnetic state were investigated. For x > 0.75 composition, it is showed that the increasing of La concentration improves magnetocaloric properties. It is also showed that post-annealing films in O 2 improves magnetocaloric effect. The magnetocaloric properties are affected by Mn +3/Mn +4 ratios, which can be varied either by changing La concentration or varying the oxygen content in the La x MnO 3?δ system. Moreover, La x MnO 3?δ films can be used as a working material of an apparatus based on the active magnetic regenerator cycle that cools hydrogen gas.  相似文献   

16.
YBa2Cu3O7−x (YBCO) films were prepared on LaAlO3 single crystal substrate under various firing temperatures (750–800 °C) in the crystallization process by metalorganic deposition (MOD) method. The coating solution was made by mixing the fluorine-free precursor solution containing Y and Cu with Ba–fluorine precursor solution (Ba-TFA). The effect of firing temperature on the structure and superconducting properties of YBCO films was systematically investigated. The results indicated that YBCO-films were smooth, crack-free, exhibited good textures and retain high oxygen content according to the XRD and SEM images. Sample of YBCO-film fired at 780 °C showed highest superconducting properties including high critical transition temperature T c=89 K, sharp transition temperature ΔT c<1 K, and critical current density J c=2.8 MA cm−2, which are attributable to excellent in-plane textures and dense microstructures with good connectivity between the grains.  相似文献   

17.
This paper reports the synthesis and characterization of a lanthanum–barium–copper oxide, based on a LaBa 2Cu 3 O 7 system, using a wet chemical route that enables the combustion–polymerization of citrate species, in order to generate materials with enhanced surface and textural and morphological properties for potential applications. The synthesized precursor in a form of a coordination complex was characterized by Fourier transform infrared spectroscopy (FTIR) analysis in order to evaluate the formation of homogeneous and soluble citrate species as intermediates of reaction. The morphological and structural characterizations were performed over calcined material with X-ray diffraction (XRD) and electron microscopy (scanning electron microscopy (SEM)-transmission electron microscopy (TEM)) analyses, confirming the obtention of an orthorhombic crystalline phase type Pmmm (47) in the nanometric range ≈8.9 nm. Analyses of the ceramic oxide by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) allowed to perform qualitative and quantitative assessments of the material composition, showing that the final oxide is closely related to the desired composition, discarding the presence of carbonaceous residues of the synthesis process.  相似文献   

18.
In this study, we report the results of an investigation into the sintering temperature dependence of magnetic and transport properties for GdBaCo2 O 5 + δ synthesized through a sol-gel method. The lowering of sintering temperature leads to the increase of oxygen content and the reduction of grain size. The increase of oxygen content results in the enhancement of magnetic interactions and the weakening of Coulomb repulsion effect, while the reduction of grain size improves the magnetoresistance effect. Metal-insulator transition accompanied with spin-state transition is observed in all samples.  相似文献   

19.
We have synthesized Li x Ni2 − x O2 oxides in the range x = 0.1–0.84 and showed that the solid-solution system contains a two-phase region. The heat capacity of Li x Ni2 − x O2 has been determined by differential scanning calorimetry.  相似文献   

20.
We have observed a change in the sign of the temperature coefficient of resistance of YBa2Cu3O7?x ceramics in the region of the superconducting transition under the action of relatively weak (<1 T) pulsed magnetic fields. The effect is probably caused by the transition of the oxide based superconductor from the normal metallic state to a pseudogap regime as a result of the partial loss of oxygen atoms from Cu-O chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号