首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to prepare solid dispersions of carbamazepine (CBZ) using polyethylene glycol (PEG) 4000 and PEG 6000, measure the dissolution, and characterize using x-ray diffraction, DSC, and IR spectroscopy. Solid dispersions were prepared by either the melt or solvent methods. A comparison of dissolution profiles of the solid dispersions indicated dramatic increases in the rate and extent of CBZ dissolution from solid dispersions. The dissolution of physical mixtures provided evidence of the solubilizing effects of PEGs. Untreated CBZ exhibited 10.09 ± 2.92% dissolution in 10 min (Dl0); whereas, a melt of PEG 6000 and CBZ at a ratio of 6: 1 provided 36.49 ± 1.97% and a melt of PEG 4000 and CBZ at a ratio of 6: 1 gave a D10 of 23.59 ± 1.45%. The rate and extent of dissolution of CBZ were significantly higher when blends of the PEGs were employed to prepare solid dispersion. The melt method provided significantly higher rate and extent of dissolution of CBZ than the solvent method. Also, the rate and extent of dissolution of CBZ were significantly greater when the solid dispersion was cooled at room temperature as opposed to with ice (faster). X-ray diffractometry revealed almost a complete loss of crystallinity of CBZ in solid dispersions. IR spectrometry indicated an increase in amorphocity of the PEGs after melting. IR spectra suggested that no complexation occurred between the PEGs and CBZ. Alterations in the crystallinity of the system were also supported by the DSC thermograms. Decreasing heats of fusion implied decrease in crystallinity, which would be expected to provide greater dissolution rates. Peak melting temperatures obtained from the thermograms ruled out the possibility of the formation of a eutectic mixture. However, the formation of solid solution could also be a possible mechanism for the increase in dissolution.  相似文献   

2.
Nifedipine (NF) is a poorly water-soluble drug, of low and irregular bioavailability after oral administration. Although some reports have attempted to improve the dissolution of NF using solid dispersions and solubilizers, little literature information is available on the in vivo performance of such preparations. The aim of the present work was to improve the therapeutic efficacy of NF via incorporation into different types of carriers, and to investigate their in vitro dissolution and bioavailability in rabbits. Nifedipine solid dispersions were prepared by fusion, solvent, and freeze-drying methods with polyethylene glycol (PEG) 6000 and PEG monomethylether 5000 (PEG MME 5000). Complexation of NF with β-cyclodextrin (β-CyD) and solubilization by sodium lauryl sulfate (SLS) have also been studied. The dissolution was determined by the flow-through cell in order to maintain perfect sink conditions. The solid dispersions resulted in a significant increase in the dissolution rate as compared to pure drug. The highest NF dissolution rate was obtained from solid dispersions containing 95% PEG 6000 prepared by the solvent method. While, unexpectedly, the highest absorption in rabbits was obtained from 95% PEG 6000 prepared by the fusion method. Compared to SLS, β-CyD gave higher in vitro and in vivo values. Differential scanning calorimetry (DSC) and powder x-ray diffractometry indicated that NF in solid dispersions is homogeneously distributed, and no drug crystallized out of the system. The DSC thermograms of NF-β-CyD complex and NF/SLS solid mixture showed a decrease in the NF endothermic peak. The x-rays showed different diffraction patterns of pure NF and pure carrier, suggesting the formation of a new solid form.  相似文献   

3.
ABSTRACT

Nifedipine (NF) is a poorly water-soluble drug, of low and irregular bioavailability after oral administration. Although some reports have attempted to improve the dissolution of NF using solid dispersions and solubilizers, little literature information is available on the in vivo performance of such preparations. The aim of the present work was to improve the therapeutic efficacy of NF via incorporation into different types of carriers, and to investigate their in vitro dissolution and bioavailability in rabbits. Nifedipine solid dispersions were prepared by fusion, solvent, and freeze-drying methods with polyethylene glycol (PEG) 6000 and PEG monomethylether 5000 (PEG MME 5000). Complexation of NF with β-cyclodextrin (β-CyD) and solubilization by sodium lauryl sulfate (SLS) have also been studied. The dissolution was determined by the flow-through cell in order to maintain perfect sink conditions. The solid dispersions resulted in a significant increase in the dissolution rate as compared to pure drug. The highest NF dissolution rate was obtained from solid dispersions containing 95% PEG 6000 prepared by the solvent method. While, unexpectedly, the highest absorption in rabbits was obtained from 95% PEG 6000 prepared by the fusion method. Compared to SLS, β-CyD gave higher in vitro and in vivo values. Differential scanning calorimetry (DSC) and powder x-ray diffractometry indicated that NF in solid dispersions is homogeneously distributed, and no drug crystallized out of the system. The DSC thermograms of NF-β-CyD complex and NF/SLS solid mixture showed a decrease in the NF endothermic peak. The x-rays showed different diffraction patterns of pure NF and pure carrier, suggesting the formation of a new solid form.  相似文献   

4.
Abstract

The objective of this study was to prepare solid dispersions of carbamazepine (CBZ) using polyethylene glycol (PEG) 4000 and PEG 6000, measure the dissolution, and characterize using x-ray diffraction, DSC, and IR spectroscopy. Solid dispersions were prepared by either the melt or solvent methods. A comparison of dissolution profiles of the solid dispersions indicated dramatic increases in the rate and extent of CBZ dissolution from solid dispersions. The dissolution of physical mixtures provided evidence of the solubilizing effects of PEGs. Untreated CBZ exhibited 10.09 ± 2.92% dissolution in 10 min (Dl0); whereas, a melt of PEG 6000 and CBZ at a ratio of 6: 1 provided 36.49 ± 1.97% and a melt of PEG 4000 and CBZ at a ratio of 6: 1 gave a D10 of 23.59 ± 1.45%. The rate and extent of dissolution of CBZ were significantly higher when blends of the PEGs were employed to prepare solid dispersion. The melt method provided significantly higher rate and extent of dissolution of CBZ than the solvent method. Also, the rate and extent of dissolution of CBZ were significantly greater when the solid dispersion was cooled at room temperature as opposed to with ice (faster). X-ray diffractometry revealed almost a complete loss of crystallinity of CBZ in solid dispersions. IR spectrometry indicated an increase in amorphocity of the PEGs after melting. IR spectra suggested that no complexation occurred between the PEGs and CBZ. Alterations in the crystallinity of the system were also supported by the DSC thermograms. Decreasing heats of fusion implied decrease in crystallinity, which would be expected to provide greater dissolution rates. Peak melting temperatures obtained from the thermograms ruled out the possibility of the formation of a eutectic mixture. However, the formation of solid solution could also be a possible mechanism for the increase in dissolution.  相似文献   

5.
Solid dispersions of nifedipine (NP) with polyethylene glycols (PEG4000 and PEG6000), hydroxypropyl-β-cyclodextrin (HPβCD), and poloxamer 407 (PXM 407) in four mixing ratios were prepared by melting, solvent, and kneading methods in order to improve the dissolution of NP. The enhancement of the dissolution rate and the time for 80% NP dissolution T80% depended on the mixing ratio and the preparation method. The highest dissolution rate and the T80% as short as 15 min were obtained from PXM 407 solid dispersion prepared by the melting method at the mixing ratio of 1:10. The X-ray diffraction (XRD) patterns of solid dispersions at higher proportions of carriers demonstrated consistent with the results from differential scanning calorimetric (DSC) thermograms that NP existed in the amorphous state. The wettability and solubility were markedly improved in the PXM 407 system. The presence of intermolecular hydrogen bonding between NP and PEGs and between HPβCD and PXM 407 was shown by infrared (IR) spectroscopy.  相似文献   

6.
Solid dispersions of 10% w/w naproxen (NAP) in poly(ethylene glycol) (PEG) (4000, 6000, or 20,000) as a carrier with or without incorporation of anionic (sodium dodecyl sulfate; SDS) or nonionic (Tween 80; Tw80) surfactant were prepared by the melting method. Physicochemical characteristics were determined by differential scanning calorimetry (DSC) and X-ray diffraction analysis. The results of dissolution studies showed that drug dissolution properties were better from ternary systems than from binary systems since in the former the wetting and solubilizing effects of surfactant and polymer were additive. No influence of the PEG molecular weight was found. The best performance given by anionic surfactant has been attributed to several factors, such as higher hydrophilicity, better solubilizing power, and most facile interaction with both drug and PEG. No important changes in solid-state characteristics or in drug dissolution properties were found after 30 months storage for dispersions with or without surfactant. Only a slight decrease in initial drug dissolution rate was observed at the highest concentration (10% w/w) of SDS.  相似文献   

7.
Solid dispersions of 10% w/w naproxen (NAP) in poly(ethylene glycol) (PEG) (4000, 6000, or 20,000) as a carrier with or without incorporation of anionic (sodium dodecyl sulfate; SDS) or nonionic (Tween 80; Tw80) surfactant were prepared by the melting method. Physicochemical characteristics were determined by differential scanning calorimetry (DSC) and X-ray diffraction analysis. The results of dissolution studies showed that drug dissolution properties were better from ternary systems than from binary systems since in the former the wetting and solubilizing effects of surfactant and polymer were additive. No influence of the PEG molecular weight was found. The best performance given by anionic surfactant has been attributed to several factors, such as higher hydrophilicity, better solubilizing power, and most facile interaction with both drug and PEG. No important changes in solid-state characteristics or in drug dissolution properties were found after 30 months storage for dispersions with or without surfactant. Only a slight decrease in initial drug dissolution rate was observed at the highest concentration (10% w/w) of SDS.  相似文献   

8.
Abstract

Solid dispersions of a very slightly water-solubte drug, ursodeoxycholic acid (UDCA), were prepared using urea, mannitol, and PEG 6000 as a carrier, and the solubility of UDCA was determined in water-ethanol (1:1) mixed solvent as a function of UDCA-carrier ratio. The solubility of UDCA was slightly improved when urea or PEG 6000 was used as a carrier. The powder x-ray diffraction measurements revealed that UDCA did not exist in the crystalline state in the solid dispersions. Differential scanning calorimetry (DSC) studies showed that UDCA was able to dissolve in the melt of urea, mannitol, and PEG 6000. The effect of carriers of solid dispersions on the UDCA dissolution rate was examined. The dissolution rate of UDCA was markedly increased from the solid dispersions of urea, PEG 6000, and mannitol, respectively.  相似文献   

9.
Enhanced Dissolution of Ursodeoxycholic Acid from the Solid Dispersion   总被引:2,自引:0,他引:2  
Solid dispersions of a very slightly water-solubte drug, ursodeoxycholic acid (UDCA), were prepared using urea, mannitol, and PEG 6000 as a carrier, and the solubility of UDCA was determined in water-ethanol (1:1) mixed solvent as a function of UDCA-carrier ratio. The solubility of UDCA was slightly improved when urea or PEG 6000 was used as a carrier. The powder x-ray diffraction measurements revealed that UDCA did not exist in the crystalline state in the solid dispersions. Differential scanning calorimetry (DSC) studies showed that UDCA was able to dissolve in the melt of urea, mannitol, and PEG 6000. The effect of carriers of solid dispersions on the UDCA dissolution rate was examined. The dissolution rate of UDCA was markedly increased from the solid dispersions of urea, PEG 6000, and mannitol, respectively.  相似文献   

10.
Nifedipine-Polyethylene glycol solid dispersions were prepared by melting or fusion method in order to improve nifedipine solubility in the aqueous body fluids. The dissolution rate of the drug was markedly increased in these solid dispersion systems. The increase in dissolution was a function of the ratio of drug to polyethylene glycol used and the molecular weight of polyethylene glycol. The dissolution rate was compared with a 10% w/w physical mixture of drug with polyethylene glycol.

The physical state of nifedipine after fusion was determined by X-ray crystallography on the pure drug and on the solidified melts. The X-ray diffraction studies indicated that nifedipine in the solid dispersion which was obtained by sudden cooling of the melt, was in the thermodynamically unstable metastable form. It was established that the slow cooling of the melt as well as powdering of solid dispersion resulted in the emergence of crystallinity.

The effect of aging on nifedipine-polyethylene glycol 6000 solid dispersions has been investigated. After storage at room temperature for six months, solid dispersions showed no change in the dissolution rate and the X-ray diffraction pattern showed slight enhancement in crystallinity.  相似文献   

11.
Diazepam-polyethyleneglycol 6000 solid dispersions systems were prepared by melting and solvent methods. These dispersions were characterized using D.T.A., X-Ray diffraction and microscopy. The phase diagram has shown that this system is characterized as a simple eutectic mixture with a eutectic composition of 87% diazepam and 13% P.E.G. 6000. Solubility studies showed a linear increase in drug solubility with the increase of PE.G. 6000 concentration.  相似文献   

12.
Abstract

Diazepam-polyethyleneglycol 6000 solid dispersions systems were prepared by melting and solvent methods. These dispersions were characterized using D.T.A., X-Ray diffraction and microscopy. The phase diagram has shown that this system is characterized as a simple eutectic mixture with a eutectic composition of 87% diazepam and 13% P.E.G. 6000. Solubility studies showed a linear increase in drug solubility with the increase of PE.G. 6000 concentration.  相似文献   

13.
Abstract

Nifedipine-Polyethylene glycol solid dispersions were prepared by melting or fusion method in order to improve nifedipine solubility in the aqueous body fluids. The dissolution rate of the drug was markedly increased in these solid dispersion systems. The increase in dissolution was a function of the ratio of drug to polyethylene glycol used and the molecular weight of polyethylene glycol. The dissolution rate was compared with a 10% w/w physical mixture of drug with polyethylene glycol.

The physical state of nifedipine after fusion was determined by X-ray crystallography on the pure drug and on the solidified melts. The X-ray diffraction studies indicated that nifedipine in the solid dispersion which was obtained by sudden cooling of the melt, was in the thermodynamically unstable metastable form. It was established that the slow cooling of the melt as well as powdering of solid dispersion resulted in the emergence of crystallinity.

The effect of aging on nifedipine-polyethylene glycol 6000 solid dispersions has been investigated. After storage at room temperature for six months, solid dispersions showed no change in the dissolution rate and the X-ray diffraction pattern showed slight enhancement in crystallinity.  相似文献   

14.
The aim of this study was to develop a new fast-disintegrating tablet formulation containing 1?mg tacrolimus for sublingual application. First, solid dispersions containing tacrolimus (2.5%, 5% and 10% w/w) incorporated in Ac-Di-Sol(?) and carriers (inulin 1.8?kDa and 4?kDa, and polyvinylpyrrolidone (PVP) K30) were prepared by freeze drying. Subsequently, a tablet formulation composed of a mixture of the solid dispersions, Ac-Di-Sol(?), mannitol, Avicel(?) PH-101 and sodium stearyl fumarate was optimized concerning drug load in the solid dispersions and the type of carrier. Tablet weight was kept constant at 75?mg by adjusting the amount of Avicel(?) PH-101. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) results indicated the absence of the drug in the crystalline state, which was confirmed by the scanning electron microscopy (SEM). These results suggest that tacrolimus incorporated in all of the solid dispersions was fully amorphous. Dissolution of the tablets containing solid dispersions with a low drug load highly depends on the type of carrier and increased in the order: PVP K30 < inulin 4?kDa < inulin 1.8?kDa. Solid dispersions with a drug load of 10% w/w incorporated in the carriers yielded optimal formulations. In addition, the physicochemical characteristics and the dissolution behavior of the tablet formulation containing inulin 1.8 kDa-based solid dispersions with a drug load of 10% w/w did not change after storage at 20°C/45%RH for 6 months indicating excellent storage stability.  相似文献   

15.
Abstract

Differential thermal analysis (DTA) has been used to study the properties of seven drug-polyethylene glycol 6000 solid dispersions immediatley after preparation by rapid cooling. PEG 6000 displayed a melting point of 64°C but other, second order transitions occurred at 29 to 40°C and at ~ -50°C. Melts of chloramphenicol, glutethimide, griseofulvin, indomethacin and paracetamol solidifed to glasses, but phenacetin and phenylbutazone recrystallised. By examining the dispersions at various drug:PEG 6000 ratios, ranges were estimated which corresponded to PEG recrystallisation, PEG fusion, drug recrystallisation and drug fusion. It was predicted that systems which displayed PEG melting endotherms at drug contents of 0 to > 70% drug and drug melting endotherms at contents in excess of 50% drug, made unsuitable solid dispersions because increases in dissolution rate occurred over a limited range of low drug content. Graphs of reciprocal glass transition temperatures (Tg) and dispersion content indicated a transition temperature for PEG 6000 at -71°C. Using this value and the observed Tg values of the drugs, estimates of T- values were compared with observed values throughout the drug:PEG 6000 phase diagrams. Systems where the observed Tg values were higher than calculated Tg values (paracetamol or chloramphenicol) were less prone to age-mediated dissolution changes than those systems where the calculated Tg values exceeded the observed values (glutethimide, griseofulvin or indomethacin).  相似文献   

16.
This study investigates the solid–solid interactions between nimodipine (NIM) and polyethylene glycol (PEG) of different mean molecular weights (PEG 2000, 4000 and 6000), in solid dispersion systems, applying differential scanning calorimetry (DSC), Fourier-Transform infrared spectroscopy, powder X-ray diffraction (PXRD), hot stage microscopy (HSM) and theoretical modeling by the Flory–Huggins (FH) solution theory. Phase diagrams constructed with the aid of DSC and FH solution theory showed sensitivity on the estimated values of the FH interaction parameter (χ). When χ is considered a constant number (χ?=?α, α?≠?0), formation of a eutectic mixture is predicted in the 70–80% w/w PEG concentration region, while when χ was considered as a function of concentration and temperature (χ?=?f(φ,Τ)), the model predicts the formation of monotectic systems. Construction of more precise phase diagrams by HSM to the aid of Kofler’s “contact preparation” method confirmed the monotectic nature of the examined systems. Studies on NIM’s re-crystallization process in the solid dispersions revealed a strong dependence of the crystallization rate, as well as the resulting crystal form, on the mean molecular weight and concentration of PEG: NIM crystallization rates decrease as PEG’s MW increases, while NIM mod II crystals predominate in dispersions prepared at temperatures above NIM’s liquidus and growth of NIM mod I prevailing in PEG-rich samples.  相似文献   

17.
Different ratios of hydrochlorothiazide (HCT) and each of Polyethylene glycol (PEG) and B-cyclodextrin (B-CD) solid dispersions were prepared by melting and solvent method respectively. The solid dispersions were subjected to X-ray diffraction, I.R. spectroscopy, DSC and Dissolution from constant surface tablets. The drug was in the amorphous form when the ratios of the drug/PEG were less than 1:3. It formed hydrogen bond with both polymers. The dissolution of the drug from drug/PEG and drug/B-CD solid dispersions increased with the increase in the weight fraction of the polymers, reaching a maximum and then decreased with further increase of the latters.  相似文献   

18.
Different ratios of hydrochlorothiazide (HCT) and each of Polyethylene glycol (PEG) and B-cyclodextrin (B-CD) solid dispersions were prepared by melting and solvent method respectively. The solid dispersions were subjected to X-ray diffraction, I.R. spectroscopy, DSC and Dissolution from constant surface tablets. The drug was in the amorphous form when the ratios of the drug/PEG were less than 1:3. It formed hydrogen bond with both polymers. The dissolution of the drug from drug/PEG and drug/B-CD solid dispersions increased with the increase in the weight fraction of the polymers, reaching a maximum and then decreased with further increase of the latters.  相似文献   

19.
Abstract

The effects of different formulations and processes on inducing and maintaining the supersaturation of ternary solid dispersions of ezetimibe (EZ) in two biorelevant media fasted-state simulated intestinal fluid (FaSSIF) and fasted-state simulated gastric fluid (FaSSGF) at different temperatures (25?°C and 37?°C) were investigated in this work.

Ternary solid dispersions of EZ were prepared by adding polymer PVP-K30 and surfactant poloxamer 188 using melt-quenching and spray-drying methods. The resulting solid dispersions were characterized using scanning electron microscopy, differential scanning calorimetry (DSC), modulated DSC, powder X-ray diffraction and Fourier transformation infrared spectroscopy. The dissolution of all the ternary solid dispersions was tested in vitro under non-sink conditions.

All the prepared solid dispersions were amorphous in nature. In FaSSIF at 25?°C, the melt-quenched (MQ) solid dispersions of EZ were more soluble than the spray-dried (SD) solid dispersions and supersaturation was maintained. However, at 37?°C, rapid and variable precipitation behavior was observed for all the MQ and SD formulations. In FaSSGF, the melting method resulted in better solubility than the spray-drying method at both temperatures.

Ternary solid dispersions show potential for improving solubility and supersaturation. However, powder dissolution experiments of these solid dispersions of EZ at 25?°C may not predict the supersaturation behavior at physiologically relevant temperatures.  相似文献   

20.
Coprecipitates of diflunisal and polyvinylpyrrolidone (PVP K15, K30, and K90) and physical mixtures were studied using x-ray diffraction analysis, infrared (IR) spectroscopy, differential scanning calorimetry (DSC), and hot-stage microscopy. X-ray diffraction results revealed an almost amorphous state, even in coprecipitates with a high content of drug, next to 70%, which was independent of the polymer molecular weight. The IR spectra of 70:30 drug-PVP solid dispersions suggest the formation of diflunisal-PVP hydrogen bonds. For 70:30 drug-polymer ratio, the physical mixture showed linear dissolution kinetics of free crystals, but the corresponding coprecipitates exhibit two different dissolution processes. When the 25:75 drug-polymer dispersion is analyzed by hot-stage microscopy, only solid plates of PVP are observed; the absence of drug particles may be due to a molecular dispersion of the drug into the polymer. Moreover, polymorphic changes of diflunisal were detected in the solid dispersions in comparison with the corresponding physical mixtures, which are always formed by polymorph II. At high concentrations of drug (75:25 and 80:20), x-ray diffraction patterns of solid dispersions showed the partial recrystallization of the drug, displaying the main diffraction peaks of polymorph I when ethanol was used as coprecipitation solvent, whereas diflunisal form IV was obtained in chloroform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号