首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Despite epidemiological studies indicating a positive relationship between alcohol and stroke, little is known with regard to effect of chronic alcohol on neuronal injury after stroke. In this study, we examined the effect of chronic ethanol on mRNA levels of sarcoplasmic or endoplasmic Ca2+-ATPase (SERCA2b) and inositol 1,4, 5-triphosphate receptor (IP3R1) in gerbils subjected to global cerebral ischemia induced by ligation of both common carotid arteries. Gerbils were given daily by intragastric intubation either a liquid diet containing ethanol (4 g/kg) or the same diet with an isocaloric amount of sucrose for 35 days. They were subsequently subjected to a 5 min ischemic insult followed by reperfusion for 48 h. In agreement with other studies, ischemic insult caused significant decreases (P<0.05) in mRNA levels of both IP3R1 and SERCA2b in the hippocampal CA1 region but not in the dentate gyrus. Nevertheless, despite a significant (P<0.05) decrease in SERCA2b mRNA in the Purkinje neurons, chronic ethanol did not alter the expression of this mRNA species in the hippocampal CA1 neurons nor did it alter the decrease in SERCA2b mRNA due to cerebral ischemic insult. Since IP3R1 and SERCA2b are key mediators for regulation of intracellular Ca2+ stores, the decrease in SERCA2b mRNA but not IP3R1 mRNA in cerebellar neurons may be an important mechanism underlying alteration of calcium homeostasis and cerebellar degeneration upon chronic ethanol consumption.  相似文献   

2.
Uric acid is a well-known natural antioxidant present in fluids and tissues throughout the body. Oxyradical production and cellular calcium overload are believed to contribute to the damage and death of neurons that occurs following cerebral ischemia in victims of stroke. We now report that uric acid protects cultured rat hippocampal neurons against cell death induced by insults relevant to the pathogenesis of cerebral ischemia, including exposure to the excitatory amino acid glutamate and the metabolic poison cyanide. Confocal laser scanning microscope analyses showed that uric acid suppresses the accumulation of reactive oxygen species (hydrogen peroxide and peroxynitrite), and lipid peroxidation, associated with each insult. Mitochondrial function was compromised by the excitotoxic and metabolic insults, and was preserved in neurons treated with uric acid. Delayed elevations of intracellular free calcium levels induced by glutamate and cyanide were significantly attenuated in neurons treated with uric acid. These data demonstrate a neuroprotective action of uric acid that involves suppression of oxyradical accumulation, stabilization of calcium homeostasis, and preservation of mitochondrial function. Administration of uric acid to adult rats either 24 hr prior to middle cerebral artery occlusion (62.5 mg uric acid/kg, intraperitoneally) or 1 hr following reperfusion (16 mg uric acid/kg, intravenously) resulted in a highly significant reduction in ischemic damage to cerebral cortex and striatum, and improved behavioral outcome. These findings support a central role for oxyradicals in excitotoxic and ischemic neuronal injury, and suggest a potential therapeutic use for uric acid in ischemic stroke and related neurodegenerative conditions.  相似文献   

3.
This article describes the pathophysiology of, and treatment strategy for, cerebral ischemia. It is useful to think of an ischemic lesion as a densely ischemic core surrounded by better perfused "penumbra" tissue that is silent electrically but remains viable. Reperfusion plays an important role in the pathophysiology of cerebral ischemia. Magnetic resonance imaging (MRI) and histological studies in rat focal ischemia models using transient middle cerebral artery (MCA) occlusion indicate that reperfusion after an ischemic episode of 2- to 3-hour duration does not result in reduction of the size of the infarct. Brief occlusion of the MCA produces a characteristic, cell-type specific injury in the striatum where medium-sized spinous projection neurons are selectively lost; this injury is accompanied by gliosis. Transient forebrain ischemia leads to delayed death of the CA1 neurons in the hippocampus. Immunohistochemical and biochemical investigations of Ca2+/calmodulin-dependent protein kinase II(CaM kinase II) and protein phosphatase (calcineurin) after transient forebrain ischemia demonstrated that the activity of CaM kinase II was decreased in the CA1 region of the hippocampus early (6-12 hours) after ischemia. However, calcineurin was preserved in the CA1 region until 1.5 days after the ischemic insult and then lost; a subsequent increase in the morphological degeneration of neurons was observed. We hypothesized that an imbalance of Ca2+/calmodulin dependent protein phosphorylation-dephosphorylation may be involved in delayed neuronal death after ischemia. In the treatment of acute ischemic stroke, immediate recanalization of the occluded artery, using systemic or local thrombolysis, is optimal for restoring the blood flow and rescuing the ischemic brain from complete infarction. However, the window of therapeutic effectiveness is very narrow. The development of effective neuroprotection methods and the establishment of reliable imaging modalities for an early and accurate diagnosis of the extent and degree of the ischemia are imperative.  相似文献   

4.
A sudden surge in the release of glutamate is currently believed to be an important initiating step in neuronal damage due to an ischemic insult. In this experiment, we tested the efficacy of neuroprotection with lamotrigine, a novel antiepileptic drug that blocks voltage gated sodium channels and inhibits the ischemia-induced release of glutamate in the gerbil forebrain model of cerebral ischemia. The medication was administered 30 min before and 30 min after the insult in two groups of animals. Histological assessment of neuronal damage was evaluated at 7 and 28 days after the ischemic insult. Animals evaluated at 28 days also underwent behavioral testing. Microdialysis was used in the same model to study the response of ischemia-induced glutamate in saline treated controls versus animals treated with lamotrigine 20 min before the insult. There was highly significant neuronal protection in animals who were treated with lamotrigine either before or after the insult. Protection was seen both at 7 and 28 days after the insult. Behavioral testing also showed significantly better recovery in both sets of animals in comparison to the saline-treated group. Microdialysis confirmed a significant attenuation of the ischemia-induced glutamate surge when compared to the saline-treated animals. Our morphological, behavioral and microdialysis experiments show that lamotrigine offers significant neuroprotection from the effects of transient forebrain ischemia in gerbils. Neuroprotection with post-ischemic therapy probably depends on preserving the capacity of the sodium/calcium exchanger to reduce intracellular calcium concentrations or persistent 'toxicity' of glutamate in the reperfusion period on the already 'primed' injured neurons. These concepts need further study.  相似文献   

5.
BACKGROUND: It has been postulated that anesthetic agents that reduce cerebral metabolic rate will protect the brain against ischemia when electroencephalographic (EEG) activity is persistent, but will provide no protection when ischemia is severe enough to cause EEG isoelectricity. No outcome studies have addressed this issue. The authors studied anesthetic agents to determine if they provide differential effects on outcome from global cerebral ischemic insults that cause either an attenuated or isoelectric EEG. METHODS: Fasted rats were subjected to either (1) incomplete ischemia (attenuated EEG; 20 min of mean arterial pressure [MAP] = 50 mmHg and bilateral carotid occlusion) or (2) near-complete ischemia (isoelectric EEG; 10 min of MAP = 30 mmHg and bilateral carotid occlusion) while anesthetized with 1.4% isoflurane, 1 mg x kg(-1) x min(-1) ketamine, or 25 microg x kg(-1) x h(-1) 70% nitrous oxide and fentanyl. The brain was maintained at normothermia during ischemia and for 22 h after ischemia. Five days later, hippocampal CA1 and cortical injury were measured. RESULTS: There was no difference among anesthetic agents during incomplete ischemia for mean +/- SD percentage dead CA1 neurons (fentanyl, 38%+/-20%; isoflurane, 31%+/-10%; ketamine, 40%+/-19%; P = 0.38). During near-complete ischemia, there was a difference among anesthetic agents (fentanyl, 88%+/-9%; isoflurane, 37%+/-20%; ketamine, 70%+/-28%; P = 0.00008). Isoflurane was protective compared with fentanyl (P = 0.00007) and ketamine (P = 0.0061). There was no difference between fentanyl and ketamine (P = 0.143). Similar observations were made in the cortex. Neurologic function correlated with histologic damage. CONCLUSIONS: Outcome from near-complete but not incomplete cerebral ischemia depended on the anesthetic agent administered during the ischemic insult.  相似文献   

6.
Repetitive cerebral ischemia produces more severe damage than a similar single duration insult. We have previously shown that, in gerbils, damage in the substantia nigra reticulata (SNr) is seen with repetitive insults rather than a single insult. We have also shown that there is a progressive decrease in the extracellular GABA in the striatum in the days preceding such damage, speculating that a loss of GABA may be in part responsible for this damage. This study evaluates the GABA levels in the SNr in animals exposed to repetitive ischemic insults. Each animal received a total of three ischemic insults of 3-min duration at hourly intervals. In vivo microdialysis was carried out to analyze the GABA and glutamate dialysate levels on Days 1, 3, 5, 7, and 14 following the ischemic insult. In the control and treated (ischemic) animals, there was a significant increase in the GABA levels with the introduction of nipecotic acid on Days 1, 3, 5, and 14. However, on Day 7 there was a significant attenuation in the GABA response to nipecotic acid in the treated animals in comparison to the controls. The glutamate levels in the treated animals were similar to the control animals on Days 1, 3, 5, and 7. However, on Day 14 the glutamate levels were significantly lower than on previous days. Our experiments for the first time measure extracellular glutamate and GABA responses in the SNr in animals exposed to repetitive ischemic insults. Our experiments show that there is a significant decrease in the GABA concentrations at a time when ischemic damage is developing in this region. This confirms our hypothesis that a decrease in GABA may be one factor contributing to neuronal damage during the period following repetitive ischemic insults. Further, the rebound increase in GABA levels on Day 14 with a concomitant fall in glutamate levels would indicate that reparative processes are still active in the 2 weeks following the insult.  相似文献   

7.
An initial overload of intracellular Ca2+ plays a critical role in the delayed death of hippocampal CA1 neurons that die a few days after transient ischemia. Without direct evidence, the prevailing hypothesis has been that Ca2+ overload may recur until cell death. Here, we report the first measurements of intracellular Ca2+ in living CA1 neurons within brain slices prepared 1, 2, and 3 days after transient (5 min) ischemia. With no sign of ongoing Ca2+ overload, voltage-dependent Ca2+ transients were actually reduced after 2-3 days of reperfusion. Resting Ca2+ levels and recovery rate after loading were similar to neurons receiving no ischemic insult. The tetrodotoxin-insensitive Ca spike, normally generated by these neurons, was absent at 2 days postischemia, as was a large fraction of Ca2+-dependent spike train adaptation. These surprising findings may lead to a new perspective on delayed neuronal death and intervention.  相似文献   

8.
The observation that the free radical nitric oxide (NO) acts as a cell signaling molecule in key physiological processes such as regulation of blood pressure and immunological host-defense responses is probably one of the most important and exciting findings made in biology in the last decade. Likewise, in the brain NO has been implicated in a number of fundamental processes, including memory formation, sexual behavior and the control of cerebral blood flow. This has radically altered the accepted dogma of brain physiology and has placed NO at the center stage of neuroscience research. Evidence suggests that some of the actions of NO in the brain may be intimately linked to those of the classic excitatory neurotransmitter glutamate. The historical view that aberrations in glutamate signal transduction may underlie central neurodegeneration following, for example, cerebral ischemia, has implicated NO, by default, as a potential mediator of neuronal death. Indeed, with the advent of potent and specific compounds that interact with NO synthesizing (NOS) enzymes and with the NO signaling cascade, there is now ample evidence to suggest that NO can mediate neurodegeneration, although its involvement is paradoxical. Its cerebrovascular effects may act to limit ischemic damage by preserving tissue perfusion and preventing platelet aggregation, while NO produced in the parenchyma, either directly following the ischemic insult or at a later stage as part of a neuroinflammatory response, may be deleterious to the outcome of ischemia. Nonetheless, significant efforts are made into the potential therapeutic use of chemical NO donors and specific NOS inhibitors in the treatment of cerebral ischemia and other central neurodegenerative disorders. Here, the latest concepts and developments in our understanding of the role of NO in cerebral ischemic neurodegeneration are discussed.  相似文献   

9.
Organ perfusion with bloodless solutions is an established clinical method for protecting the heart against ischemic damage. In our study, we evaluated the effects of intraischemic bloodless brain perfusion on postischemic ultrastructural neuronal changes in a model of severe incomplete forebrain ischemia produced by hemorrhagic hypotension combined with temporary carotid occlusion in the rat. Four groups of rats were compared. During an ischemic insult of 30 min, the brains of two groups were perfused via both external carotids with either a normosmolar normothermic magnesium-enriched perfusate (MgSO4, 30 mM; NaCl, 37 mM; mannitol, 180 mM; n = 10) or a normothermic normal saline solution (n = 9) at a rate of 6 ml/h. Two other groups (ischemia without perfusion, n = 8; no ischemia and no perfusion, n = 7) served as controls. After 30 min of ischemia, withdrawn blood for hemorrhagic hypotension was reinfused, the carotid arteries reopened, and the brains reperfused for 2 h. After perfusion-fixation, qualitative and quantitative evaluation of postischemic cell changes of hippocampal CA1 neurons was performed by electron microscopy. Brain perfusion with the magnesium-containing solution significantly protected neurons against ischemic cell changes and provided an ultrastructural pattern similar to that seen in the nonischemic control group. In contrast, brain perfusion with normal saline solution did not result in neuronal protection. We conclude that intraischemic intracarotid brain perfusion with magnesium-enriched perfusate protects hippocampal neurons significantly against ischemic cell changes in the early reperfusion period after transient severe forebrain ischemia.  相似文献   

10.
Transient neurophysiological changes in CA3 neurons and dentate granule cells after severe forebrain ischemia in vivo. J. Neurophysiol. 80: 2860-2869, 1998. The spontaneous activities, evoked synaptic responses, and membrane properties of CA3 pyramidal neurons and dentate granule cells in rat hippocampus were compared before ischemia and 相似文献   

11.
Increases in cytosolic free calcium concentration ([Ca2+]I) may play an important role in myocardial ischemic injury. An early effect of the rise in [Ca2+]I may be impaired postischemic contractile function if the ischemic myocardium is reperfused during the reversible phase of ischemic injury; furthermore, if the rise in [Ca2+]I is prolonged, a cascade of events may be initiated which ultimately results in lethal injury. With the development of methods for measuring [Ca2+]I, it has become possible to evaluate directly the role of increased [Ca2+]I in myocardial ischemic injury. Although it has been possible to show that inhibition of the transport processes which contribute to the early rise in [Ca2+]I attenuates stunning and the rise in [Ca2+]I concurrently, if increased [Ca2+]I plays an important role in ischemic injury, then it should be possible to show that interventions which alter the timecourse of ischemic injury also alter the timecourse of the rise in [Ca2+]I in a parallel manner. Recently, considerable effort has been expended to investigate the mechanisms underlying the preconditioning phenomenon, whereby repetitive brief periods of ischemia prior to a sustained period of ischemia protects the myocardium from injury during the sustained period of ischemia, and this has stimulated additional work to understand the possible involvement of adenosine as a mediator of preconditioning as well as to understand the protective effects of adenosine. Measurements of [Ca2+]I using 19F NMR of 5FBAPTA-loaded hearts have shown that preconditioning attenuates the rise in [Ca2+]I during 30 min of ischemia and reduces stunning during reflow. Adenosine pretreatment mimics the effects of preconditioning on the rise in [Ca2+]I and on stunning, but adenosine receptor antagonists do not eliminate the protective effects of preconditioning, although some adenosine antagonists also block hexose transport and under these conditions, the ability of preconditioning to attenuate the rise in [Ca2+]I is abolished and there is a corresponding loss of the protective effect of preconditioning on stunning. Although it has been suggested that the beneficial effect of preconditioning on infarct size can be eliminated by pretreatment with glibenclamide, in the isolated rat heart glibenclamide does not affect the attenuation of the rise in [Ca2+]I induced by preconditioning and does not affect stunning. All of these studies show a consistent relationship between the magnitude of the rise in [Ca2+]I during ischemia and the degree of stunning during reperfusion. The data suggest that increased [Ca2+]I plays a very important role in myocardial ischemic injury.  相似文献   

12.
Focal cerebral ischemia elicits a strong inflammatory response involving early recruitment of granulocytes and delayed infiltration of ischemic areas and the boundary zones by T cells and macrophages. Infiltration of hematogenous leukocytes is facilitated by an upregulation of the cellular adhesion molecules P-selectin, intercellular adhesion molecule-1 and vascular adhesion molecule-1 on endothelial cells. Blocking of the leukocyte/endothelial cell adhesion process significantly reduces stroke volume after transient, but not permanent middle cerebral artery occlusion. In the infarct region microglia are activated within hours and within days transform into phagocytes. Astrocytes upregulate intermediate filaments, synthesize neurotrophins and form glial scars. Local microglia and infiltrating macrophages demarcate infarcts and rapidly remove debris. Remote from the lesion no cellular infiltration occurs, but astroglia and microglia are transiently activated. Astrocytic activation is induced by spreading depression. In focal ischemia neurons die acutely by necrosis and in a delayed fashion by programmed cell death, apoptosis. Proinflammatory cytokines such as tumor necrosis factor-alpha and interleukin-1 beta are upregulated within hours in ischemic brain lesions. Either directly or via induction of neurotoxic mediators such as nitric oxide, cytokines may contribute to infarct progression in the post-ischemic period. On the other hand, inflammation is tightly linked with rapid removal of debris and repair processes. At present it is unclear whether detrimental effects of inflammation outweigh neuroprotective mechanisms or vice versa. In global ischemia inflammatory responses are limited, but micro- and astroglia are also strongly activated. Glial responses significantly differ between brain regions with selective neuronal death and neighbouring areas that are more resistent to ischemic damage.  相似文献   

13.
Protein kinase C (PKC) consists of a family of closely related Ca2+/phospholipid-dependent phosphotransferase isozymes, most of which are present in the brain and are differentially activated by second messengers. Calcium-dependent PKC activity may cause neuronal degeneration after ischemic insult. PKC is also involved in trophic-factor signaling, indicating that activity of some PKC subspecies may be beneficial to the injured brain. Therefore, we screened long-term changes in the expression of multiple PKC subspecies after focal brain ischemia. Middle cerebral artery occlusion was produced by using an intraluminal suture for 30 min of 90 min. In in situ hybridization experiments, mRNA levels of PKC alpha, -beta, -gamma, -delta, -epsilon, and -zeta were decreased in the infarct core 4 hr after ischemia and were lost completely 12 hr after ischemia. In areas surrounding the core, PKC delta mRNA was specifically induced 4, 12, and 24 hr after ischemia in the cortex. At 3 and 7 d, the core and a rim around it showed increased mRNA levels of PKC delta. No other subspecies were induced. At 2 d, immunoblotting demonstrated increased levels of PKC delta protein in the perifocal tissue, and immunocytochemistry revealed an increased number of PKC delta-positive neurons in the perifocal cortex. In the core, PKC delta-positive macrophages and endothelial cells were seen. Pretreatment with MK-801, an NMDA antagonist, inhibited cortical PKC delta mRNA induction. The data show that focal brain ischemia induces PKC delta mRNA and protein but not other PKC subspecies through the activation of NMDA receptors and that the upregulation lasts for several days in neurons of the perifocal zone.  相似文献   

14.
Recent progress in both experimental and clinical studies of cerebral infarction is outlined, and research on delayed neuronal death and ischemic penumbra is described. Development of animal models to study clinical pathophysiology is reviewed, and our focal cerebral ischemia model which has been used for many years is introduced. With elucidation of the pathophysiology of cerebral ischemia, various pharmaceutical agents have appeared recently in the clinical setting and our experimental trials on the treatment of cerebral ischemia are also introduced. From the clinical aspect, practical methods of treatment including antiplatelet therapy are explained. Cerebrovascular dementia and its prevention are also described.  相似文献   

15.
The rat hippocampus is hypersensitive to secondary cerebral ischemia after mild traumatic brain injury (TBI). An unconfirmed assumption in previous studies of mild TBI followed by forebrain ischemia has been that antecedent TBI did not alter cerebral blood flow (CBF) dynamics in response to secondary ischemia. Using laser Doppler flowmetry (LDF), relative changes in regional hippocampal CA1 blood flow (hCBF) were recorded continuously to quantitatively characterize hCBF before, during, and after 6 min of forebrain ischemia in either normal or mildly traumatized rats. Two experimental groups of fasted male Wistar rats were compared. Group 1 (n = 6) rats were given 6 minutes of transient forebrain ischemia using bilateral carotid clamping and hemorrhagic hypotension. Group 2 (n = 6) rats were subjected to mild (0.8 atm) fluid percussion TBI followed 1 h after trauma by 6 min of transient forebrain ischemia. The laser Doppler flow probe was inserted stereotactically to measure CA1 blood flow. The electroencephalogram (EEG) was continuously recorded. During the forebrain ischemic insult there were no intergroup differences in the magnitude or duration of the decrease in CBF in CA1. In both groups, CBF returned to preischemic values within one minute of reperfusion but traumatized rats had no initial hyperemia. There were no intergroup differences in the CBF threshold when the EEG became isoelectric. These data suggest that the ischemic insult was comparable either with or without antecedent TBI in this model. This confirms that this model of TBI followed by forebrain ischemia is well suited for evaluating changes in the sensitivity of CA1 neurons to cerebral ischemia rather than assessing differences in relative ischemia.  相似文献   

16.
F Bari  TM Louis  DW Busija 《Canadian Metallurgical Quarterly》1998,29(1):222-7; discussion 227-8
BACKGROUND AND PURPOSE: Arterial hypoxia mediates cerebral arteriolar dilation primarily via mechanisms involving activation of ATP-sensitive K+ channels (K[ATP]), which we have shown to be sensitive to ischemic stress. In this study, we determined whether ischemia/reperfusion alters cerebral arteriolar responses to arterial hypoxia in anesthetized piglets. Since adenosine plays an important role in cerebrovascular responses to hypoxia, we also determined whether adenosine-induced arteriolar dilation is affected by ischemic stress. We tested the hypothesis that reductions in cerebral arteriolar dilator responses after ischemia would be proportional to the contribution of K(ATP) to hypoxia and adenosine. METHODS: Pial arteriolar diameters were measured using a cranial window and intravital microscopy. We examined arteriolar responses to arterial hypoxia (inhalation of 8.5% and 7.5% O2), to topical adenosine (10[-5] and 10[-4] mol/L) and to arterial hypercapnia (inhalation of 5% and 10% CO2 in air) before and after 10 minutes of global ischemia. Ischemia was achieved by increasing intracranial pressure. Arterial hypercapnia was used as a positive control for the effectiveness of the ischemic insult. In addition, we evaluated cerebral arteriolar responses to 10(-5) and 10(-4) mol/L adenosine applied topically with or without glibenclamide, a selective inhibitor of K(ATP) (10[-5] and 10[-6] mol/L). Finally, we administered theophylline (20 mg/kg, i.v.) to assess the contribution of adenosine to cerebral arteriolar dilation to arterial hypoxia. RESULTS: Before ischemia, cerebral arterioles dilated by 19+/-3% to moderate and 29+/-4% to severe hypoxia (n=7; P<.05); 13+/-2% to 10(-5) and 20+/-1% to 10(-4) mol/L adenosine (n=9; P<.05); and by 17+/-2% to moderate and 28+/-3% to severe hypercapnia (n=6; P<.05). After ischemia, cerebral arteriolar responses to hypoxia and adenosine were unchanged. In contrast, cerebral arteriolar dilation to hypercapnia was impaired by ischemia (1+/-1% and 2+/-1% at 1 hour; n=6). Glibenclamide reduced cerebral arteriolar dilation to adenosine by approximately one half (n= 7). In addition, blockade of adenosine receptors by theophylline (20 mg/kg, i.v.) almost totally suppressed cerebral arteriolar dilation to arterial hypoxia (n = 6). CONCLUSIONS: Cerebrovascular responsiveness is selectively affected by anoxic stress. In addition, cerebral arteriolar dilation to hypoxia and adenosine is maintained after ischemia despite the expected impairment in K(ATP) function.  相似文献   

17.
Adenosine, produced from the decomposition of adenosine triphosphate, is believed to provide protective effects during ischemia. On the other hand, adenosine metabolites may serve as precursors for oxygen free radical formation. The time course of formation of adenosine and its purine metabolites was studied during retinal ischemia in rats. Concentrations of adenosine and its purine nucleoside metabolites inosine, hypoxanthine, and xanthine in the retina-choroid of ketamine/xylazine-anesthetized rats were measured during retinal ischemia using high performance liquid chromatography. Quantitative measurements were made possible in the small tissue mass through the use of internal standards. Ischemia was induced by ligation of the central retinal artery. In each rat, one eye was ischemic while the other served as a non-ischemic control. Eyes were frozen in situ at 1, 5, 10, 20, 30, 60, and 120 min of ischemia. The retina-choroid was then removed from the frozen eyes and analysed. Significant increases in the concentrations of adenosine, inosine, and hypoxanthine in ischemic compared to control retina-choroid were detectable within 1 to 5 min of the onset of ischemia, and within 10 min for xanthine. Increase in adenosine concentration in ischemic relative to control retina-choroid plateaued at 30 min of ischemia, while inosine and hypoxanthine concentrations increased continuously. The increase in xanthine concentration was exponential throughout the measurement period. This study documented the time-related changes in purine nucleoside concentration during ischemia. Prolonged ischemia results in ongoing production of xanthine, which by serving as a precursor for oxygen free radical formation, could be a pathogenic factor in prolonged retinal ischemia.  相似文献   

18.
We examined the functionality of hippocampal CA1 neurons at early times after transient global ischemia, by electrophysiologic recordings in brain slices. Transient ischemia was conducted on rats using the method of 15-minute four-vessel occlusion, and brain slices were obtained from these animals at different times after ischemia. Within 24 hours after insult, CA1 neurons showed no substantial damage as identified by morphologic means, but exhibited dramatic decreases in synaptic activities by 12 hours after insult, which became further decreased at more extended times after recovery. Blocking gamma-aminobutyric acid A (GABAA) receptors with bicuculline produced a reversible augmentation of the diminished synaptic responses in slices prepared from 12-hour postinsult animals, but failed to do so in slices obtained from rats 24 hours after insult. Recorded in whole-cell mode, the minimum depolarizing current required to elicit an action potential was about twofold larger in the ischemic CA1 neurons than in sham controls, suggesting that an elevated spiking threshold exists in these neurons. We suggest that decreases in electrophysiologic activities precede the morphologic deterioration in postischemic CA1 neurons. The early decrease in CA1 synaptic activities may be associated with an imbalance between glutamate-mediated synaptic excitation and GABAA-mediated synaptic inhibition, whereas substantial impairments in synaptic transmission likely take place after prolonged post-ischemic recovery.  相似文献   

19.
Ischemic stroke is the most common life-threatening neurological disease and has limited therapeutic options. One component of ischemic neuronal death is inflammation. Here we show that doxycycline and minocycline, which are broad-spectrum antibiotics and have antiinflammatory effects independent of their antimicrobial activity, protect hippocampal neurons against global ischemia in gerbils. Minocycline increased the survival of CA1 pyramidal neurons from 10.5% to 77% when the treatment was started 12 h before ischemia and to 71% when the treatment was started 30 min after ischemia. The survival with corresponding pre- and posttreatment with doxycycline was 57% and 47%, respectively. Minocycline prevented completely the ischemia-induced activation of microglia and the appearance of NADPH-diaphorase reactive cells, but did not affect induction of glial acidic fibrillary protein, a marker of astrogliosis. Minocycline treatment for 4 days resulted in a 70% reduction in mRNA induction of interleukin-1beta-converting enzyme, a caspase that is induced in microglia after ischemia. Likewise, expression of inducible nitric oxide synthase mRNA was attenuated by 30% in minocycline-treated animals. Our results suggest that lipid-soluble tetracyclines, doxycycline and minocycline, inhibit inflammation and are neuroprotective against ischemic stroke, even when administered after the insult. Tetracycline derivatives may have a potential use also as antiischemic compounds in humans.  相似文献   

20.
Cerebral ischemia is known to modify the expression of genetic information in the brain. To complement this knowledge, in the present study we have estimated the expression of calcium- and phospholipid-dependent (classical) protein kinase C (c PKC) isoform mRNAs (alpha, beta1 and gamma) at different time following ischemia. Forebrain cerebral ischemia was performed on Mongolian gerbils by 5 minutes bilateral occlusion of common carotid arteries. At the pointed time the cytoplasmic RNA was extracted from hippocampus and the expression of PKC mRNA quantified by RT PCR technique using GAPDH expression as an internal standard. Results indicate that only one gamma isoform of cPKC mRNA expression becomes significantly modified in postischemic hippocampus. A transient increase up to 145% of control within the first 3 h was followed by its decline to 60-65% at a longer recirculation period. This lowered levels returned back to control at 72 h postischemic recovery. This result indicates that gamma PKC could be particularly sensitive to ischemic insult and would react in accordance with the other early signals determining ischemic outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号