首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is to study the thermal characteristics and electron density based on atomic and molecular emission of a new plasma jet at atmospheric pressure. The novelty of our jet is its generation with a single electrode, the plasma gas flowing perpendicularly to the RF powered electrode (13.56 MHz, 103 V). Optical emission of the plasma was collected in two ways: the normal viewing mode and the axial viewing mode. The plasma characteristic parameters as function of helium flow-rate, plasma power and position of the investigated zone were studied. The excitation, vibrational and rotational temperatures are in the range of 1500-2350 K, 3500-4400 K and 450-1100 K, respectively. The electron number densities are in the range of 1013-1014 cm−3. For qualitative observations regarding the atomic and molecular processes in the plasma we used the relative intensities of the most representative lines of He, N2, O, H and .  相似文献   

2.
The enhancement and optimization of H extraction through argon and magnesium seeding of hydrogen discharges in a magnetized sheet plasma source are reported. The paper first presents the modification of the production chamber into a hexapole multicusp configuration resulting in decreased power requirements, improved plasma confinement and longer filament lifetime. By this, a wider choice of discharge currents for sustained quiescent plasmas is made possible. Second, the method of adding argon to the hydrogen plasma similar to the scheme in Abate and Ramos [Y. Abate, H. Ramos, Rev. Sci. Instr. 71 (10) (2000) 3689] was performed to find the optimum conditions for H formation and extraction. Using an E × B probe, H yields were investigated at varied argon-hydrogen admixtures, different discharge currents and spatial points relative to the core plasma. The optimum H current density extracted at 3.0 cm from the plasma core using 3.0 A plasma current with 10% argon seeding increased by a factor of 2.42 (0.63 A/m2) compared to the measurement of Abate and Ramos [Y. Abate, H. Ramos, Rev. Sci. Instr. 71 (10) (2000) 3689]. Third, the argon-hydrogen plasma at the extraction chamber is seeded with magnesium. Mg disk with an effective area of 22 cm2 is placed at the extraction region’s anode biased 175 V with respect to the cathode. With Mg seeding, the optimum H current density at the same site and discharge conditions increased by 4.9 times (3.09 A/m2). The enhancement effects were analyzed vis-à-vis information gathered from the usual Langmuir probe (electron temperature and density), electron energy distribution function (EEDF) and the ensuing dissociative attachment (DA) reaction rates at different spatial points for various plasma discharges and gas ratios. Investigations on the changes in the effective electron temperature and electron density indicate that the enhancement is due to increased density of low-energy electrons in the volume, conducive for DA reactions. With Mg, the density of electrons with electron temperature of about 3 eV increased 3 orders of magnitude from 2.76 × 1012 m−3 to 2.90 × 1015 m−3.  相似文献   

3.
In electron cyclotron resonance (ECR) ion sources, confinement of ions and electrons is achieved with the help of an axial field in combination with a multipolar field. Generally sextupoles are used for this purpose. In a few sources, quadrupoles and octupoles also have been used. But sextupoles have been found to be most useful. We have investigated whether a combination of different multipoles can improve the performance of an ECR trap. A mixture of a sextupolar field and a dipole field has been found to enhance the electron heating to a large extent.  相似文献   

4.
The Langmuir probe measurements were carried out in a planar rf discharge of N2 and Ar gases. The dc characteristic I-U curves are calculated from the measured rf characteristic I-U curves for frequencies 10-60 MHz. The measured parameters such as electron temperature and electron density are compared with the simulated results. At gas pressures 10-40 Pa, the sheath thickness at the powered electrode was proportional to f−0.5 for simulation and f−2/3 by using the electrical parameters of the probe measurements and to p−0.5 for both cases.  相似文献   

5.
A Monte Carlo simulation technique is used to investigate electron transport in N2O in crossed RF electric and magnetic fields. Our work has resulted in a database of transport parameters which can be used for correct implementation in modeling RF discharges. A behavior of transport coefficients under the influence of the magnitude and the frequency of the fields was studied separately revealing some complex features in the time dependence, most notably anomalous anisotropic diffusion and time-resolved negative differential conductivity.  相似文献   

6.
A dc glow discharge plasma source was developed for inner surface modification of metallic tubes with an inner diameter of 10 mm. A tungsten wire of 30 μm thick was stretched inside the tube to form coaxial electrodes. DC glow discharge plasma was generated inside the tube by applying a negative high dc voltage to the tube. It was found that the length of the cylindrical plasma bulk depends linearly on the applied voltage. The electron excitation temperature of Ar plasma was measured as 12830 ± 550 K by optical emission spectroscopy method. As a preliminary application, diamond-like carbon (DLC) films were deposited onto the inner surface of stainless steel tube of 100 mm in length and 10 mm in inner diameter by using CH4/Ar mixture with 40% CH4 at 40 Pa pressure. The chemical structure of the DLC film deposited on the substrate was analyzed by Raman spectroscopy. The integrated intensity ratio (ID:IG) was obtained as 1.62 from the Raman spectra. The thickness of the DLC film deposited on the substrate was estimated as 1.5 μm by scanning electron microscopy (SEM) observation.  相似文献   

7.
An E × B probe (a modified Wien filter) is constructed to function both as a mass spectrometer and ion implanter. The device, given the acronym EXBII selects negative hydrogen ions (H) from a premixed 10% argon-seeded hydrogen sheet plasma. With a vacuum background of 1.0 × 10−6 Torr, H extraction ensues at a total gas feed of 1.8 mTorr, 0.5 A plasma discharge. The EXBII is positioned 3 cm distance from the sheet core as this is the region densely populated by cold electrons (Te ∼ 2 eV, Ne ∼ 3.4 × 1011 cm−3) best suited for H formation. The extracted H ions of flux density ∼0.26 A/m2 are segregated, accelerated to hyperthermal range (<100 eV) and subsequently deposited into a palladium-coated 1.1 × 1.1 cm2, n-type Si (1 0 0) substrate held at the rear end of the EXBII, placed in lieu of its Faraday cup. The palladium membrane plays the role of a catalyst initiating the reaction between Si atoms and H ions simultaneously capping the sample from oxidation and other undesirable adsorbents. AFM and FTIR characterization tests confirm the formation of SiH2. Absorbance peaks between 900-970 cm−1 (bending modes) and 2050-2260 cm−1 (stretching modes) are observed in the FTIR spectra of the processed samples. It is found that varying hydrogen exposure time results in the shifting of wavenumbers which may be interpreted as changes in the frequencies of vibration for SiH2. These are manifestations of chemical changes accompanying alterations in the force constant of the molecule. The sample with longer exposure time exhibits an additional peak at 2036 cm−1 which are hydrides of nano-crystalline silicon.  相似文献   

8.
In this letter, the streamer propagation in the atmospheric pressure helium plasma jet with afloating electrode nozzle driven by the kHz AC power supply is investigated. The current signal induced by the space charges and the mean propagation velocity of the guided ionization waves are measured by the capacitive probe method in the discharge region. The space charges in the guided ionization waves are found to increase with the applied voltage, which enhances both the electric field near the streamer head and the propagation velocity. The applicability of the streamer mechanism to the propagation of the guided ionization waves is validated by this electrical diagnostic method.  相似文献   

9.
Ion Cyclotron Wall Conditioning (ICWC) discharges, in pulsed-mode operation, were carried out in the divertor tokamaks ASDEX Upgrade (AUG) and JET to simulate the scenario of ITER wall conditioning at half-field (AUG) and full-field (JET). ICWC-plasma and antenna coupling characterization results obtained during the Ion Cyclotron Resonance Frequency (ICRF)-Wall Conditioning experiments performed in helium-hydrogen mixture in AUG and helium-deuterium mixtures in JET are presented here. Safe operational regimes for optimum ICWC in ITER could be explored for different magnetic fields. Satisfactory antenna coupling in the Mode Conversion scenario along with reproducible generation of ICRF plasmas and reliable wall conditioning were achieved by coupling RF power from one or two ICRF antennas at two (AUG, JET) different resonant frequencies. These results are in qualitative agreement with the predictions of 1-D TOMCAT code. Present study of ICWC indicates towards the beneficial effect of application of an additional (along with toroidal magnetic field) stationary vertical (BV ? BT) magnetic field on antenna coupling and plasma parameters. The results obtained from JET and AUG tokamaks, presented in this paper, emphasizes the proposed phenomenological schemes for further development of ICWC in superconducting tokamaks.  相似文献   

10.
AbstractThis study investigates the influence of two types of target, skin tissue and cell culture medium,with different permittivities on a kHz helium atmospheric pressure plasma jet (APPJ) during itsapplication for wound healing. The basic optical–electrical characteristics, the initiation andpropagation and the emission spectra of the He APPJ under different working conditions areexplored. The experimental results show that, compared with a jet freely expanding in air, thediameter and intensity of the plasma plume outside the nozzle increase when it interacts with thepigskin and cell culture medium targets, and the mean velocity of the plasma bullet from the tubenozzle to a distance of 15 mm is also significantly increased. There are also multiple increases inthe relative intensity of OH (A2 Σ → X2 Π) and O (3p5 S–3s5 S) at a position 15 mm away fromnozzle when the He APPJ interacts with cell culture medium compared with the air and pigskintargets. Taking the surface charging of the low permittivity material capacitance and thestrengthened electric field intensity into account, they make the various characteristics of HeAPPJ interacting with two different targets together.  相似文献   

11.
A feasibility study was performed to generate new sufficient mirror cusp magnetic field (CMF) by using the coils of the existing room temperature traditional 18 GHz electron cyclotron resonance ion source (ECRIS) at RIKEN. The CMF configuration was chosen because it contains plasma superbly and no multipole magnet is needed to make the contained plasma quiescent with no magneto-hydrodynamic (MHD) instability and to make the system cost-effective. The least magnetic field, 13 kG is achieved at the interior wall of the plasma chamber including the point cusps (PC) on the central axis and the ring cusp (RC) on the mid-plane. The mirror ratio calculation and electron simulation were done in the computed CMF. It was found to contain the electrons for longer time than in traditional field. It is proposed that a powerful CMF ECRIS can be constructed, which is capable of producing intense highly charged ion (HCI) beam for light and heavy elements.  相似文献   

12.
This study investigates the influence of two types of target,skin tissue and cell culture medium,with different permittivities on a k Hz helium atmospheric pressure plasma jet (APPJ) during its application for wound healing.The basic optical–electrical characteristics,the initiation and propagation and the emission spectra of the He APPJ under different working conditions are explored.The experimental results show that,compared with a jet freely expanding in air,the diameter and intensity of the plasma plume outside the nozzle increase when it interacts with the pigskin and cell culture medium targets,and the mean velocity of the plasma bullet from the tube nozzle to a distance of 15 mm is also significantly increased.There are also multiple increases in the relative intensity of OH (A~2Σ?→?X~2Π) and O (3p~5S–3s~5S) at a position 15 mm away from nozzle when the He APPJ interacts with cell culture medium compared with the air and pigskin targets.Taking the surface charging of the low permittivity material capacitance and the strengthened electric field intensity into account,they make the various characteristics of He APPJ interacting with two different targets together.  相似文献   

13.
On the basis of the fluid theory and the drift–diffusion approximation, a numerical model for dual-frequency atmospheric pressure helium discharge is established, in order to investigate the effects of the high frequency source (HF) on the characteristics of dual-frequency atmospheric pressure helium discharge. The numerical results showed that the electron heating rate increases with enhancing HF frequency, as well as the particles densities, electron dissipation rate, current density, net electron generation and bulk plasma region. Moreover, it is also observed that the efficient electron heating region moves when the HF frequency has been changed. The plasma parameters are not linear change with the HF frequency linearly increasing.  相似文献   

14.
《等离子体科学和技术》2019,21(11):115403-44
In this paper, a honeycomb structure jet array with seven jet units was adopted to generate plasmas. Both the average discharge power and the emission intensity of the main excited species increase with increasing applied voltage. There are three stages of discharge evolution at different applied voltages: initial discharge, uniform discharge and strong coupling discharge.The spatial distribution of the emission intensity of the excited species can be divided into three categories: growth class, weakening class and variation class. The gas temperature along the whole plasma plume at different applied voltages is maintained at around 320K and can be widely used in heat-labile applications.  相似文献   

15.
Plasma polymers of acrylic acid were obtained using an atmospheric pressure discharge system. The plasma polymerization reactor uses a dielectric barrier discharge, with the polyethylene terephthalate dielectric acting as substrate for deposition. The plasma was characterized by specific electrical measurements, monitoring the applied voltage and the discharge current. Based on the spatially resolved optical emission spectroscopy, we analyzed the distribution of the excited species in the discharge gap, specific plasma temperatures (vibrational and gas temperatures) being calculated with the Boltzmann plot method. The properties of the plasma polymer films were investigated by contact angle measurements, infrared and UV-Vis spectroscopy, scanning electron microscopy. The films produced by plasma polymerization at atmospheric pressure showed a hydrophilic character, in correlation with the strong absorbance of OH groups in the FTIR spectrum. Moreover, the surface of the plasma polymers at micrometric scale is smooth and free of defects without particular features.  相似文献   

16.
UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source.The effect of the addition of molecular gases N_2 and O_2 to He plasma jets on OH generation was studied.Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species.Stark broadening of the hydrogen Balmer emission line(H_β)was used to estimate the electron density nein the jets.For both He/N_2 and He/O_2 jets, newas estimated to be on the order of 10~(15)cm~(-3).The effects of plasma power and gas flow rate were also studied.With increase in N_2 and O_2 flow rates, netended to decrease.Gas temperature in the He/O_2 plasma jets was elevated compared to the temperatures in the pure He and He/N_2 plasma jets.The highest OH densities in the He/N_2 and He/O_2 plasma jets were determined to be 1.0?×10~(16)molecules/cm~3 at x?=?4 mm(from the jet orifice)and 1.8?×?10~(16)molecules/cm~3 at x=3 mm, respectively.Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions.The presence of strong emissions of the N_2~+ bands in both He/N_2 and He/O_2 plasma jets, as against the absence of the N_2~+ emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N_2~+ in these He plasma jets.  相似文献   

17.
In this work,a two-dimensional numerical simulation of the discharge characteristics of helium plasma propagating inside a dielectric tube was performed.A trapezoidal +9 kV pulse lasting 400 ns was applied on a needle electrode set inside the dielectric tube to ignite the discharge.The discharges generated in the tubes with a variable or a constant inner diameter were investigated.The focus of this study was on clarifying the effect of the tube diameter on the discharge structure and dynamics.The comparison of the discharge characteristics generated in dielectric tubes with different diameters was carried out.It was shown that the tube diameter plays a significant role in discharge behavior of plasma propagating in the dielectric tube.  相似文献   

18.
A comparative study of radio-frequency atmospheric pressure glow discharge(rf APGD)generated in helium with and without dielectric electrodes to investigate the effect of electrodes insulation on electrical features of APGD is presented. In the α mode, both the rf APGDs remain volumetric, stable and uniform. In the γ mode, the APGD without dielectric electrodes shrinks into a constricted plasma column whereas APGD with dielectric electrodes remains stable and retains the same volume without plasma constriction even at higher densities of discharge current. A comparison of electrical features of both rf APGDs in normal and abnormal glow discharge regimes is presented. In both APGDs with and without dielectric electrodes,impedance measurements have been performed and compared with equivalent circuit models.The measured impedance data is found to be in good agreement with simulated data.  相似文献   

19.
The environment that leads to the sputtering of graphite electrodes and formation of carbonaceous discharge has been studied with emission spectroscopy. Population level densities, excitation & vibrational temperatures and electron densities have been obtained from a set of three ion sources. The sources operate in continuous and pulsed discharge modes. The sputtered species include monatomic, diatomic and higher carbon clusters. The main sputtered species are excited and ionized C1 (CI, CII, respectively) and C2. In the continuous arc discharge the vibrational temperature derived from the Swan band of C2 is ∼10,000 K, whereas, in the pulsed arc the excitation temperature of Neon is ∼11,000 K. The spark discharge yields an average excitation temperature of CI and NI ∼ 5500 K.  相似文献   

20.
In this study, the density of metastable He2* in an atmospheric-pressure plasma jet operating in helium with 0.001% nitrogen has been measured using an auxiliary measuring electrode technique. In the glow discharge mode, waveforms from two grounding electrodes, including one main discharge electrode and one auxiliary electrode, are captured. The isolated current peak formed by Penning ionization in waveforms from the auxiliary measuring electrode is identified to calculate the density of metastable He2*. In our discharge environment, the helium metastable densities along the jet axis direction are between 2.26× 1013 and 1.74× 1013 cm-3, which is in good agreement with the results measured by other techniques. This measurement technique can be conveniently applied to the diagnosis of metastableHe2* in an atmospheric-pressure plasma jet array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号