首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Silicon oxynitride (SixOyNz) layers were synthesized by implanting 16O2+ and 14N2+ 30 keV ions in 1:1 ratio with fluences ranging from 5 × 1016 to 1 × 1018 ions cm−2 into single crystal silicon at room temperature. Rapid thermal annealing (RTA) of the samples was carried out at different temperatures in nitrogen ambient for 5 min. The FTIR studies show that the structures of ion-beam synthesized oxynitride layers are strongly dependent on total ion-fluence and annealing temperature. It is found that the structures formed at lower ion fluences (∼1 × 1017 ions cm−2) are homogenous oxygen-rich silicon oxynitride. However, at higher fluence levels (∼1 × 1018 ions cm−2) formation of homogenous nitrogen rich silicon oxynitride is observed due to ion-beam induced surface sputtering effects. The Micro-Raman studies on 1173 K annealed samples show formation of partially amorphous oxygen and nitrogen rich silicon oxynitride structures with crystalline silicon beneath it for lower and higher ion fluences, respectively. The Ellipsometry studies on 1173 K annealed samples show an increase in the thickness of silicon oxynitride layer with increasing ion fluence. The refractive index of the ion-beam synthesized layers is found to be in the range 1.54-1.96.  相似文献   

2.
To study the effects of swift heavy ion irradiation on cerium dioxide (CeO2), CeO2 sintered pellets were irradiated with 200 MeV Xe ions at room temperature. For irradiated and unirradiated samples, the spectra of X-ray photoelectron spectroscopy (XPS) were measured. XPS spectra for the irradiated samples show that the valence state of Ce atoms partly changes from +4 to +3. The amount of Ce3+ state was quantitatively obtained as a function of ion-fluence. The relative amount of oxygen atom displacements, which are accompanied by the decrease in Ce valence state, is 3-5%. This value is too large to be explained in terms of elastic interactions between CeO2 and 200 MeV ions. The experimental result suggests the contribution of 200 MeV Xe induced electronic excitation to the displacements of oxygen atoms.  相似文献   

3.
Structural modifications in the zircon and scheelite phases of ThGeO4 induced by swift heavy ions (93 MeV Ni7+) at different fluences as well as pressure quenching effects are reported. X-ray diffraction and Raman measurements at room temperature on the irradiated zircon phase of ThGeO4 indicate the occurrence of stresses that lead to a reduction of the cell volume up to 2% followed by its transformation to a mixture of nano-crystalline and amorphous scheelite phases. Irradiation of the zircon phase at liquid nitrogen temperature induces amorphization at a lower fluence (7.5 × 1016 ions/m2), as compared to that at room temperature (6 × 1017 ions/m2). Scheelite type ThGeO4 irradiated at room temperature undergoes complete amorphization at a lower fluence of 7.5 × 1016 ions/m2 without any volume reduction. The track radii deduced from X-ray diffraction measurements on room temperature irradiated zircon, scheelite and low temperature irradiated zircon phases of ThGeO4 are, 3.9, 3.5 and 4.5 nm, respectively. X-ray structural investigations on the zircon phase of ThGeO4 recovered after pressurization to about 3.5 and 9 GPa at ambient temperature show the coexistence of zircon and disordered scheelite phases with a larger fraction of scheelite phase occurring at 9 GPa. On the other hand, the scheelite phase quenched from 9 GPa shows crystalline scheelite phase pattern.  相似文献   

4.
The synthesis of buried silicon nitride insulating layers was carried out by SIMNI (separation by implanted nitrogen) process using implantation of 140 keV nitrogen (14N+) ions at fluence of 1.0 × 1017, 2.5 × 1017 and 5.0 × 1017 cm−2 into 〈1 1 1〉 single crystal silicon substrates held at elevated temperature (410 °C). The structures of ion-beam synthesized buried silicon nitride layers were studied by X-ray diffraction (XRD) technique. The XRD studies reveal the formation of hexagonal silicon nitride (Si3N4) structure at all fluences. The concentration of the silicon nitride phase was found to be dependent on the ion fluence. The intensity and full width at half maximum (FWHM) of XRD peak were found to increase with increase in ion fluence. The Raman spectra for samples implanted with different ion fluences show crystalline silicon (c-Si) substrate peak at wavenumber 520 cm−1. The intensity of the silicon peak was found to decrease with increase in ion fluence.  相似文献   

5.
NiO thin films grown on Si(1 0 0) substrate by electron beam evaporation and sintered at 500 and 700 °C were irradiated with 120 MeV Au9+ ions. The FCC structure of the sintered films was retained up to the highest fluence (3 × 1013 ions cm−2) of irradiation. In the low fluence (?1 × 1013 ions cm−2) regime however, the evolution of the XRD pattern with fluence showed a wide variation, critically depending upon their initial microstructure. Though irradiation is known to induce disorder in the structure, we observe improvement in crystallization and texturing at intermediate fluences of irradiation.  相似文献   

6.
The results of the research in explosive decomposition of heavy metal azides initiated by electric (“streamer”) charges induced by high-current electron beam have been considered. A physical model for initiation of heavy metal azides explosive decomposition by electron beam has been suggested. The model suggests formation of strong electric field in the sample and its neutralization by ultrasound anode charges. The streamer front generates “hot spots” which start the formation of explosive decomposition sites in a condensed reactive material.  相似文献   

7.
The purpose of this paper is to give some aspects of charging effects on dielectric materials submitted to continuous electron beam irradiation in a scanning electron microscope (SEM). When the dielectric is irradiated continuously, the so-called total yield approach (TYA) used to predict the sign of the charge appeared on electron irradiated insulators fails because the charge accumulated in the dielectric interferes with the electrons emission processes. Based on previous experimental and theoretical works found in the literature, an analysis of the evolution of the electron yield curves σ = f(E0) of insulators during irradiation is given. The aim of this work is firstly to determine experimentally the second crossover energy E2C under continuous electron irradiation (charging conditions) and secondly to demonstrate that the charge balance occurs at this beam energy and not at E2 the energy deduced from non-charging conditions (pulse primary electron beam experiments) as commonly asserted. It is however possible to apply the TYA by substituting the critical energy E2 for E2C. The experimental procedure is based on simultaneous time dependent measurements of surface potential, leakage current and displacement current. The study underlines the difference between the landing energy of primary electrons EL at the steady state and the second crossover energy, E2C, for charged samples. Some preliminary results are also obtained concerning the influence of the incident beam density on the energy E2C. The samples used for this study are PMMA, polycrystalline silicone dioxide (p-SiO2), polycrystalline alumina (p-Al2O3) and soda lime glass (SLG).  相似文献   

8.
A review is presented of recent results on radiation damage production, defect accumulation and dynamic annealing in a number of ceramics, such as silicon carbide, zircon and zirconia. Under energetic particle irradiation, ceramics can undergo amorphization by the accumulation of point defects and defect clusters (silicon carbide) or direct impact amorphization (zircon). Ceramics that resist radiation-induced amorphization have mechanisms to dissipate the primary knock-on atom energy, such as replacement collision sequences that leave the lattice undisturbed and low-energy cation site exchange. The presence of engineered mobile defects, such as structural vacancies in stabilized zirconia, can dynamically anneal radiation damage. Thus, defect engineering is a promising strategy to design radiation tolerance for applications such as nuclear waste disposal.  相似文献   

9.
Single crystals of sapphire (α-Al2O3) were irradiated at GANIL with 0.7 MeV/amu xenon ions corresponding to an electronic stopping power of 21 keV/nm. Several fluences were applied between 5 × 1011 and 2 × 1014 ions/cm2. Irradiated samples were characterized using optical absorption spectroscopy. This technique exhibited the characteristic bands associated with F and F+ centers defects. The F centers density was found to increase with the fluence following two different kinetics: a rapid increase for fluences less than 1013 ions/cm2 and then, a slow increase for higher fluences. For fluences less than 1013 ions/cm2, results are in good agreement with those obtained by Canut et al. [B. Canut, A. Benyagoub, G. Marest, A. Meftah, N. Moncoffre, S.M.M. Ramos, F. Studer, P. Thévenard, M. Toulemonde, Phys. Rev. B 51 (1995) 12194]. In the fluences range: 1013-1014 ions/cm2, the F centers defects creation process is found to be different from the one evidenced for fluences less than 1013 ions/cm2.  相似文献   

10.
In this work x-cut Lithium Niobate crystals were implanted with 0.5 MeV O ions (nuclear stopping regime), 5 MeV O ions (sub-threshold electronic stopping regime) and 12.5 MeV Ti ions (ion track regime) at the fluences required for the formation of a surface fully disordered layer. The damage depth profiles were determined by RBS-channeling. Wet etching was performed at room temperature in 50% HF:H2O solution. The data indicated an exponential dependence of the etching rate on the damage concentration. Independently of the damage regime, once random level in the RBS-channeling spectra was attained we measured the same etching rate (50-100 nm/s) and the same volume expansion (∼10%) in all samples. These results indicate that the fully disordered layers obtained by electronic damage accumulation have the same chemical properties of those obtained by conventional nuclear damage accumulation and therefore they can be defined “amorphous”. The impressive etching selectivity of ion implanted regions makes this process suitable for sub-micro machining of Lithium Niobate.  相似文献   

11.
Single crystal silicon samples were implanted at 140 keV by oxygen (16O+) ion beam to fluence levels of 1.0 × 1017, 2.5 × 1017 and 5.0 × 1017 cm−2 to synthesize buried silicon oxide insulating layers by SIMOX (separation by implanted oxygen) process at room temperature and at high temperature (325 °C). The structure and composition of the ion-beam synthesized buried silicon oxide layers were investigated by Fourier transform infrared (FTIR) and Rutherford backscattering spectroscopy (RBS) techniques. The FTIR spectra of implanted samples reveal absorption in the wavenumber range 1250-750 cm−1 corresponding to the stretching vibration of Si-O bonds indicating the formation of silicon oxide. The integrated absorption band intensity is found to increase with increase in the ion fluence. The absorption peak was rather board for 325 °C implanted sample. The FTIR studies show that the structures of ion-beam synthesized buried oxide layers are strongly dependent on total ion fluence. The RBS measurements show that the thickness of the buried oxide layer increases with increase in the oxygen fluence. However, the thickness of the top silicon layer was found to decrease with increase in the ion fluence. The total oxygen fluence estimated from the RBS data is found to be in good agreement with the implanted oxygen fluence. The high temperature implantation leads to increase in the concentration of the oxide formation compared to room temperature implantation.  相似文献   

12.
13.
Ge oxide films were irradiated with 150 MeV Ag ions at fluences varying between 1012 and 1014 ions/cm2. The irradiation-induced changes were monitored by FT-IR spectroscopy, atomic force microscopy, X-ray diffraction and photoluminescence spectroscopy. The FT-IR spectra indicate stoichiometric changes and an increase in Ge content on irradiation. X-ray diffraction shows a crystallization of the irradiated films and presence of both Ge and GeO2 phases. The Ge nanocrystal size, as calculated from Scherrer’s formula, was around 30 nm. The morphological changes, observed in atomic force microscopy, also indicate formation of nanostructures upon ion irradiation and a uniform growth is observed for a fluence of 1 × 1014 ions/cm2.  相似文献   

14.
In order to study the radiation effects in BaTiO3 ferroelectric crystal, a previously developed shell model is modified. The modifications include adding the ZBL universal potentials at short distances and distance-dependent spring constants for core-shell interactions. The phase transition sequences in BaTiO3 were correctly reproduced using molecular dynamics simulations with this modified shell model. Also, the calculated Frenkel pair formation energies agree well with results obtained by first principles calculations, which suggests that this model is suitable for the simulation of the radiation effects in BaTiO3. The dependence of polarization on the number of oxygen vacancies was also studied.  相似文献   

15.
Commercial O-face (0 0 0 1) ZnO single crystals were implanted with 200 keV Ar ions. The ion fluences applied cover a wide range from 5 × 1011 to 7 × 1016 cm−2. The implantation and the subsequent damage analysis by Rutherford backscattering spectrometry (RBS) in channelling geometry were performed in a special target chamber at 15 K without changing the target temperature of the sample. To analyse the measured channelling spectra the computer code DICADA was used to calculate the relative concentration of displaced lattice atoms.Four stages of the damage evolution can be identified. At low ion fluences up to about 2 × 1013 cm−2 the defect concentration increases nearly linearly with rising fluence (stage I). There are strong indications that only point defects are produced, the absolute concentration of which is reasonably given by SRIM calculations using displacement energies of Ed(Zn) = 65 eV and Ed(O) = 50 eV. In a second stage the defect concentration remains almost constant at a value of about 0.02, which can be interpreted by a balance between production and recombination of point defects. For ion fluences around 5 × 1015 cm−2 a second significant increase of the defect concentration is observed (stage III). Within stage IV at fluences above 1016 cm−2 the defect concentration tends again to saturate at a level of about 0.5 which is well below amorphisation. Within stages III and IV the damage formation is strongly governed by the implanted ions and it is appropriate to conclude that the damage consists of a mixture of point defects and dislocation loops.  相似文献   

16.
Silicon nitride layers of 140 nm thickness were deposited on silicon wafers by low pressure chemical vapour deposition (LPCVD) and irradiated at GANIL with Pb ions of 110 MeV up to a maximum fluence of 4 × 1013 cm−2. As shown in a previous work these irradiation conditions, characterized by a predominant electronic slowing-down (Se = 19.3 keV nm−1), lead to damage creation and formation of etchable tracks in Si3N4. In the present study we investigated other radiation-induced effects like out of plane swelling and refractive index decrease. From profilometry, step heights as large as 50 nm were measured for samples irradiated at the highest fluences (>1013 cm−2). From optical spectroscopy, the minimum reflectivity of the target is shifted towards the high wavelengths at increasing fluences. These results evidence a concomitant decrease of density and refractive index in irradiated Si3N4. Additional measurements, performed by ellipsometry, are in full agreement with this interpretation.  相似文献   

17.
This paper describes the results on thermal and chemical analysis of polytetrafluoroethylene (PTFE) film stack after high-energy heavy ion beam irradiation under atmospheric fields at room temperature. After high-energy C6+ ion beam irradiation, the PTFE film stack was separated one by one, and then the various measurements such as differential scanning calorimetric (DSC) analysis and solid-state 19F magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy were performed to get information of the chemical reaction and structural change at the localized positions. By ion beam irradiation for PTFE at room temperature, it is suggested that the abnormal phenomena due to the change of morphology could be observed by DSC analysis. In the solid-state 19F-MAS-NMR spectroscopy of ion irradiated PTFE film including Bragg peak region, several new signals were observed besides the intense peak of -CF2- at −124 ppm. The detected new signals in ion irradiated PTFE should be due to the changed chemical structures. The signals, which are assigned, to the tertiary carbon group with branching site (Y-type crosslinking site), perfluoro-propylene site and chain end methyl site were directly detected, though it was under the oxidation condition. Thus, although it was under the oxidation condition, the branching or crosslinking reaction was taken place with the chain scission in the matrix. Moreover, the branched chain length would become short, compared with EB-crosslinked PTFE. Hence, it could be suggested that the irradiation of heavy ion beam induced large amounts of intermediate species, compared with EB or γ-ray irradiation, and then, those would be reacted with each other in the localized area. Especially, in region of the Bragg peak, the ion beam induced more large amounts of intermediate species than in the other region.  相似文献   

18.
China Low Activation Martensitic (CLAM) steel was irradiated at room temperature with different doses of He+ and H+ ion beams. TEM indicated that the microstructure of unirradiated CLAM steel consisted of laths, grain boundaries, dislocations and carbides. Electron diffraction patterns revealed that the microstructure of carbides at grain boundaries was primarily dominated by M23C6 carbide. Vacancy clusters were induced into the matrix after irradiation. TEM-EDX of carbides and matrices of unirradiated and post-irradiated samples were performed to investigate the composition of carbides and the effect of irradiation on the composition of carbides. Carbides from unirradiated and irradiated specimens at grain boundaries were found to be enriched with Cr. For irradiated specimens, concentrations of Cr increased as the irradiation dose was increased. Cr enrichment could lead to precipitation of additional phase.  相似文献   

19.
Measurements have been performed of scintillation light intensities emitted from various inorganic scintillators irradiated with low-energy beams of highly-charged ions from an electron beam ion source (EBIS) and an electron cyclotron resonance ion source (ECRIS). Beams of xenon ions Xeq+ with various charge states between q = 2 and q = 18 have been used at energies between 5 and 17.5 keV per charge generated by the ECRIS. The intensity of the beam was typically varied between 1 and 100 nA. Beams of highly charged residual gas ions have been produced by the EBIS at 4.5 keV per charge and with low intensities down to 100 pA. The scintillator materials used are flat screens of P46 YAG and P43 phosphor. In all cases, scintillation light emitted from the screen surface was detected by a CCD camera. The scintillation light intensity has been found to depend linearly on the kinetic ion energy per time deposited into the scintillator, while up to q = 18 no significant contribution from the ions’ potential energy was found. We discuss the results on the background of a possible use as beam diagnostics, e.g. for the new HITRAP facility at GSI, Germany.  相似文献   

20.
Hydrogen and helium ion beams delivering different doses are used in the ion implantation, at room temperature, of China Low Activation Martensitic (CLAM) steel and the induced defects studied by Doppler broadening of gamma-rays generated in positron annihilation. Defect profiles are analysed in terms of conventional S and W parameters, measures of relative contributions of low and high-momentum electrons in the annihilation peak, as functions of incident positron energies E up to 30 keV. The behaviours of the S-E, W-E and S-W plots under different implantation doses indicate clearly that the induced defect size has obvious variation with depth, taking values that interpolate between surface and bulk values, and depend mainly on helium ion fluences. The S-W plot indicates that two types of defects have formed after ion implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号