首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation of doubly excited states of He atoms during impact of He2+ ions with projectile energies of 60-1000 eV under near-grazing angles of incidence of 5°-20° on clean and adsorbate-covered Ni(1 1 0) surfaces is studied by means of Auger electron spectroscopy. Pronounced dependencies of electron spectra from autoionization of atoms in doubly excited 2s2, 2s2p and 2p2 configurations on the coverage of the target surface with adsorbates are observed. These are directly related to work function changes, which are studied for the controlled adsorption of oxygen. Changes of the electron spectra on the target temperature are found for adsorbate-covered surfaces only, which puts into question recent interpretations of similar electron spectra in terms of a high local electron spin polarization of Ni(1 1 0) by an alternative interpretation based on thermal desorption or dissolution into bulk of surface contaminations. The formation of doubly excited states is studied for the oxygen p(2 × l) and p(3 × l) superstructures on Ni(1 1 0) in order to provide well-defined experimental data for theoretical investigations.  相似文献   

2.
We have investigated the scattering of K+ and Cs+ ions from a single crystal Ag(0 0 1) surface and from a Ag-Si(1 0 0) Schottky diode structure. For the K+ ions, incident energies of 25 eV to 1 keV were used to obtain energy-resolved spectra of scattered ions at θi = θf = 45°. These results are compared to the classical trajectory simulation safari and show features indicative of light atom-surface scattering where sequential binary collisions can describe the observed energy loss spectra. Energy-resolved spectra obtained for Cs+ ions at incident energies of 75 eV and 200 eV also show features consistent with binary collisions. However, for this heavy atom-surface scattering system, the dominant trajectory type involves at least two surface atoms, as large angular deflections are not classically allowed for any single scattering event. In addition, a significant deviation from the classical double-collision prediction is observed for incident energies around 100 eV, and molecular dynamics studies are proposed to investigate the role of collective lattice effects. Data are also presented for the scattering of K+ ions from a Schottky diode structure, which is a prototype device for the development of active targets to probe energy loss at a surface.  相似文献   

3.
Structural and compositional modification of InSb(0 0 1) single crystal surfaces induced by oblique incidence 2-5 keV Ar and Xe ion irradiation have been investigated by means of scanning tunneling and atomic force microscopies, and time-of-flight mass spectroscopy of secondary ion emission. In general, ion-induced patterns (networks of nanowires, or ripples) are angle of incidence- and fluence-dependent. Temperature dependences (from 300 to 600 K) of the RMS roughness and of the ripple wavelength have been determined for the samples bombarded with various fluences. Secondary ion emission from an InSb(0 0 1) surface exposed to 4.5 keV Ar+ ions has been investigated with a linear TOF spectrometer working in a static mode. Mass spectra of the sputtered In+, Sb+ and In2+ secondary ions have been measured both for the non-bombarded (0 0 1) surface and for the surface previously exposed to a fluence of 1016 ions/cm2. In+ and In2+ intensities for the irradiated sample are much higher in comparison to the non-bombarded one, whereas Sb+ ions show a reversed tendency. This behavior suggests a significant In-enrichment at the InSb(0 0 1) surface caused by the ion bombardment.  相似文献   

4.
This work deals with the interference effects recently observed in grazing collisions of few-keV atoms with insulator surfaces. The process is studied within a distorted-wave method, the surface eikonal approximation, based on the use of the eikonal wave function and involving axial channeled trajectories with different initial conditions. The theory is applied to helium atoms impinging on a LiF(0 0 1) surface along the 〈1 1 0〉 direction. The role played by the projectile polarization and the surface rumpling is investigated. We found that when both effects are included, the proposed eikonal approach provides angular projectile spectra in good agreement with the experimental findings.  相似文献   

5.
We have calculated charge fractions and angular distributions of scattered He atoms resulting from the interaction of keV He+ beams at grazing incidences with an Al(1 1 1) surface. Several improvements over our earlier approaches have been incorporated. These are a more sophisticated RPA image potential for the ion-metal interaction as well as kinematic factors affecting the static rates for the Auger transfer mechanisms. For interaction cases in which both perpendicular and parallel velocities are low, we obtain angular distributions which have a better agreement with the experimental data than our earlier version of the theory, although still the theoretical results do not reach total neutralization of the beam as the experimental results show.  相似文献   

6.
The clean Cu(1 0 0) surface and Pt/Cu(1 0 0) surface by Pt deposition at room temperature have been investigated using the computer simulation of coaxial impact-collision ion scattering spectroscopy (CAICISS). The computer simulations employing the ACOCT program code, which treats the atomic collisions three-dimensionally and is based on the binary collision approximation (BCA), were carried out for the case of 3 keV He+ ions incident along the 〈1 0 0〉 and 〈1 1 0〉 azimuths of the clean Cu(1 0 0) and Pt/Cu(1 0 0) surfaces. The comparisons between ACOCT results and experimental CAICISS data show that the experimental results on the clean Cu(1 0 0) surface are relatively well reproduced by the ACOCT simulations including the inward relaxation of 1.2% in the first interlayer spacing and the outward relaxation of 1.6% in the second interlayer spacing, and that the ACOCT simulations for the Pt deposition with coverages of 2.35 ML and 2.75 ML on the Cu(1 0 0) surface appear the concentrations of 0.24 ML of Pt sitting 2.3 Å and 0.25 ML of Pt sitting 2.5 Å above the outermost atomic layer, respectively.  相似文献   

7.
8.
Previous simulations of glancing incidence ion-surface interaction have demonstrated that classical dynamics using the row-model have successfully reproduced multimodal azimuthal and polar spectra. These studies have also shown considerable sensitivity to the form of the interatomic potential thus making it a strong test of the validity of such potentials and even allow deduction of the ion-surface potentials. In these simulations the individual pairwise interactions between the projectile and the target atoms have been replaced by cylindrical potentials.Comparison to numerous experimental studies have confirmed the existence of rainbow scattering phenomena and successfully tested the validity of the cylindrical potential used in these simulations. The use of cylindrical potentials avoids stochastic effects due to thermal displacements and allows faster computer simulations leading to reliable angular distributions.In the present work we extend the row-model to consider scattering from binary alloys. Using He+ scattered at glancing incidence from NiAl surfaces, Al or Ni terminated, a faster method has been developed to easily and accurately quantize not only the maximum deflection azimuthal angle but all the singular points in the angular distribution. It has been shown that the influence of the surface termination on the rainbow angle and the inelastic losses is small.  相似文献   

9.
For scattering of fast atoms from metal and insulator surfaces under axial channeling conditions pronounced peaks in the angular distributions of scattered projectiles are interpreted in terms of rainbow scattering. The angular position of such “rainbow peaks” are closely related to the interaction potential and its corrugation in the topmost surface region. We have scattered N and O atoms, with energies ranging from 10 to 70 keV, from clean and flat Al(0 0 1) and LiF(0 0 1) surfaces along low index axial directions in the surface plane and studied the positions of the rainbow peaks as function of the kinetic energy of the atomic projectiles normal to the surface. For the insulator surface the rainbow angle does not depend on projectile energy for constant normal energy, whereas for the metal surface we find pronounced dynamic effects. We interpret this different behaviour as arising from a projectile energy dependent contribution to the underlying interaction potentials owing to embedding the projectiles into the free electron gas in the selvedge of the surfaces, which is present for the metals but absent for insulators.  相似文献   

10.
Gold nanodispersed targets with islands-grains sized 2-30 nm were irradiated by Ar7+ ions with the energy of 45.5 MeV and (dE/dx)e = 14.2 keV/nm in gold. The desorbed gold nanoclusters were studied by TEM method. For all the targets desorption of intact gold nanoclusters is observed. However, for inelastic stopping of monatomic Ar ions in gold of 14.2 keV/nm desorption of nanoclusters is observed only up to ∼25 nm. The yield of the desorbed nanoclusters considerably decreases from 3 to 0.02 cluster/ion with the increase of the mean size of the desorbed nanoclusters from 3 to 14.2 nm. The results are discussed.  相似文献   

11.
Classical molecular dynamics simulations are used to examine 1 keV Ar atom bombardment on the surface of poly(methyl methacrylate) (PMMA), which induces sputtering and chemical modifications to the surface. The simulations are carried out at various surface temperatures that range from 200 to 600 K. The results indicate that different fragments of PMMA, as characterized by their mass, are preferentially sputtered from the surface at the various temperatures considered. In addition, the simulations predict that small fragments are produced by the high energy deposition process. However, larger sized fragments are generated when the surface temperature is close to the glass transition temperature of PMMA. The atomic-scale processes by which these occur are elucidated by the simulations.  相似文献   

12.
Using molecular-dynamics simulation, we study the sputtering of a Pt(1 1 1) surface under oblique and glancing incidence 5 keV Ar ions. For incidence angles larger than a critical angle ?c, the projectile is reflected off the surface and the sputter yield is zero. We discuss the azimuth dependence of the critical angle ?c with the help of the surface corrugation felt by the impinging ion. If a step exists on the surface, sputtering occurs also for glancing incidence ?>?c. We demonstrate that for realistic step densities, the total sputtering of a stepped surface may be sizable even at glancing incidence.  相似文献   

13.
Aluminum nitride (AlN) thin films have been deposited on Si(1 1 1) substrates by using reactive-rf-magnetron-sputtering at 250 °C. The crystalline quality and orientation of the films have been studied by X-ray diffraction (XRD). We have observed that the films grow with c- or a-axis orientation. The composition, film thickness, impurities and stress are considered to be factors affecting the orientation and have been analyzed by Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA) and XRD. Their effects on the film growth will be discussed. Surface morphology of the films will be also presented.  相似文献   

14.
Recently, strong crystal effects in P+ were observed for He+ and Cu in the Auger neutralization regime, with differences in the ion fraction by up to a factor of three non-equivalent Cu surfaces. In this contribution, it is shown that these findings can quantitatively be described within the jellium model assuming perpendicular velocity scaling of P+.  相似文献   

15.
The interaction of 72 keV Au400 ions (with a diameter of approximately 2 nm) with nanodispersed gold targets has been studied. These interactions are dominated by elastic collisions. The gold nanodispersed target with 2-12 nm nanoislets was bombarded with a fluence of 1.7 × 1012 ions/cm2. The desorbed nanoclusters were collected on carbon foils supported by TEM-grids. Intact 29 nm gold nanoclusters were found on the collectors. The desorption yield (normalized to the total cross-section of the projectile-cluster interaction) was estimated to be 0.62 nanocluster/projectile. Preliminary estimates were made using molecular dynamic simulations for comparison with the experimental results.  相似文献   

16.
17.
The surrogate reaction 238U(3He, tf) is used to determine the 237Np(nf) cross section indirectly over an equivalent neutron energy range from 10 to 20 MeV. A self-supporting ∼761 μg/cm2 metallic 238U foil was bombarded with a 42 MeV 3He2+ beam from the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory (LBNL). Outgoing charged particles and fission fragments were identified using the Silicon Telescope Array for Reaction Studies (STARS) consisted of two 140 μm and one 1000 μm Micron S2 type silicon detectors. The 237Np(nf) cross sections, determined indirectly, were compared with the 237Np(nf) cross section data from direct measurements, the Evaluated Nuclear Data File (ENDF/B-VII.0), and the Japanese Evaluated Nuclear Data Library (JENDL 3.3) and found to closely follow those datasets. Use of the (3He, tf) reaction as a surrogate to extract (nf) cross sections in the 10-20 MeV equivalent neutron energy range is found to be suitable.  相似文献   

18.
The sputtering yield induced by keV hydrogen ions measured at CERN and at Risø National Laboratory for solid H2 and D2 at temperatures below 4.2 K decreases with increasing film thickness from about 100 × 1015 molecules/cm2. For a film thickness comparable to or larger than the ion range the data from Risø show a slight increase, whereas the yield from CERN continues to decrease up to very large film thicknesses, i.e. one order of magnitude larger than the ion range. The different behavior of the yield is discussed in terms of the probable growth modes of the films. The films produced at the Risø setup are quench-condensed films, while those produced at CERN are supposed to grow with large hydrogen aggregates on top of a thin bottom layer.  相似文献   

19.
Storing Matter is a new analytical technique for organic and inorganic materials, which tries to circumvent the well-known matrix effect in SIMS. This technique consists of separating the sputtering of the sample from the subsequent analysis steps. Thus, the sample to be analysed is sputtered with a focused ion beam produced by a floating low-energy ion gun (FLIG) and the particles emitted under the ion impacts are deposited at a sub-monolayer level on a well-known collector. The collector with the deposited material is then analysed in a second step by SIMS (dynamic and static mode). The main advantage of this new technique is to improve the sensitivity and the quantification of the SIMS analysis. All the processes, including all the sample and collector transfers, are performed in UHV conditions. This paper presents preliminary results obtained on the Storing Matter prototype instrument developed in our laboratory. The sputtering of a (1 0 0) Ge wafer by ions was used as a model system to study the influence of using different collector surfaces (W, Ta and Al) on the Storing Matter useful yield.  相似文献   

20.
The radioisotope 165Er (T1/2 = 10.36 h) is a candidate for Auger-electron therapy. The β-emitting 166gHo (T1/2 = 26.83 h) is now being explored for various therapeutic applications. In the frame of our systematic study of charged particle production routes of therapeutic radionuclides the excitation functions of the 165Ho(d, 2n)165Er and 165Ho(d, p)166gHo reactions were measured up to 20 MeV by using a stacked foil irradiation technique and X/γ-ray spectroscopy. The excitation function of the 165Ho(d, 2n)165Er reaction was measured for the first time while for the 165Ho(d, p)166gHo reaction only a single dataset of earlier measured cross-sections was found. The measured excitation functions were compared to the results of different nuclear reaction model codes. The calculated thick target yield of the 165Ho(d, 2n) reaction is significantly higher over the optimal energy range than that for the 165Ho(p, n) reaction investigated earlier by us. The integral yield of the 165Ho(d, p)166gHo reaction is rather low compared to the established 165Ho(n, γ)166Ho reaction in a nuclear reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号