首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Yttrium oxide dispersion strengthened (ODS) and non-ODS EUROFER produced by mechanical alloying and hot isostatic pressing have been subjected to isochronal annealing up to 1523 K, and the evolution of the open-volume defects and their thermal stability have been investigated using positron lifetime and coincidence Doppler broadening (CDB) techniques. Transmission electron microscopy (TEM) observations have also been performed on the studied samples to verify the characteristics of the surviving defects after annealing at 1523 K. The CDB spectra of ODS EUROFER exhibit a characteristic signature that is attributed to positron annihilation in Ar-decorated cavities at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature shows three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. Three-dimensional vacancy clusters, or voids, are detected in either materials in as-HIPed condition and after annealing at T ? 623 K. In the temperature range 823-1323 K, these voids’ growth and nucleation and the growth of other new species of voids take place. Above 1323 K, some unstable cavities start to anneal out, and cavities associated to oxide particles and other small precipitates survive to annealing at 1523 K. The TEM observations and the positron annihilation results indicate that these cavities should be decorated with Ar atoms absorbed during the mechanical alloying process.  相似文献   

2.
The behaviour of vacancy like implantation-induced defects created in the track region of 800 keV 3He ions in polycrystalline tungsten was studied by Doppler broadening spectroscopy as a function of annealing temperature. A slow positron beam, coupled with a Doppler broadening spectrometer, was used to measure the low- and high-momentum annihilation fractions, S and W, respectively, as a function of positron energy in tungsten samples implanted at different fluences from 1014 to 5 × 1016 cm−2. The behaviour of the S(E), W(E) and S(W) plots with the annealing temperature clearly indicates that the irradiation-induced vacancy like defects begin to evolve between 523 and 573 K, whatever the implantation fluence. This first temperature stage evolution corresponds to the migration of the monovacancies created during implantation to form larger vacancy like defects of which depth profile is different from the initial radiation-induced defects one.  相似文献   

3.
The Doppler broadening spectrum of a silicon wafer was measured using a variable-energy positron beam to investigate the effects of vacancy-type defects induced by 180 keV Ar ion implantation. The S-parameter in the damaged layer decreases with annealing temperature up to 673 K, and then increases with annealing temperature from 673 to 1373 K. At low annealing temperatures ranging from room temperature to 673 K, argon-decorated vacancies are formed by argon atoms combining with open-volume defects at inactive positron sites. With further increase of annealing temperature, argon-decorated vacancies dissociate and subsequently migrate and coalesce, leading to an increase of S-parameter. Furthermore, the buried vacancy-layer becomes narrow with increasing annealing temperature. At 1373 K, the buried vacancy-layer moved towards the sample surface.  相似文献   

4.
Positron annihilation spectroscopy along with glancing incidence X-ray diffraction have been used to investigate tin oxide thin films grown on Si by pulsed laser deposition. The films were prepared at room temperature and at 670 K under oxygen partial pressure. As-grown samples are amorphous and are found to contain large concentration of open volume sites (vacancy defects). Post-deposition annealing of as-grown samples at 970 K is found to drastically reduce the number of open volume sites and the film becomes crystalline. However, film grown under elevated temperature and under partial pressure of oxygen is found to exhibit a lower S-parameter, indicating lower defect concentration. Based on the analysis of experimental positron annihilation results, the defect-sensitive S-parameter and the overlayer thickness of tin oxide thin films are deduced. S-W correlation plots exhibit distinct positron trapping defect states in three samples.  相似文献   

5.
Two-detector coincidence system and mono-energetic slow positron beam has been applied to measure the Doppler broadening spectra for single crystals of SiO2, SiO2 films with different thickness thermally grown on single crystal of Cz-Si, and single crystal of Si without oxide film. Oxygen is recognized as a peak at about 11.85 × 10−3m0c on the ratio curves. The S parameters decrease with the increase of positron implantation energy for the single crystal of SiO2 and Si without oxide film. However, for the thermally grown SiO2-Si sample, the S parameters in near surface of the sample increase with positron implantation energy. It is due to the formation of silicon oxide at the surface, which lead to lower S value. S and W parameters vary with positron implantation depth indicate that the SiO2-Si system consist of a surface layer, a SiO2 layer, a SiO2-Si interface layer and a semi-infinite Si substrate.  相似文献   

6.
Mesoporous TiO2 films were synthesized by using triblock copolymers via a sol-gel process in aqueous solution. It was found that a film calcined at 600 °C has the highest photocatalytic activity. By application of positron annihilation Doppler broadening spectroscopy combined with XRD, SEM, and N2 adsorption desorption techniques, the film structural properties were examined systematically. It is revealed that an excellent photocatalytic activity could be achieved only if a film maintains a suitable TiO2 grain size, i.e. ∼7.5 nm in the present study, a median specific surface area and a high crystallinity in anatase state.  相似文献   

7.
Hydrogen and helium ion beams delivering different doses are used in the ion implantation, at room temperature, of China Low Activation Martensitic (CLAM) steel and the induced defects studied by Doppler broadening of gamma-rays generated in positron annihilation. Defect profiles are analysed in terms of conventional S and W parameters, measures of relative contributions of low and high-momentum electrons in the annihilation peak, as functions of incident positron energies E up to 30 keV. The behaviours of the S-E, W-E and S-W plots under different implantation doses indicate clearly that the induced defect size has obvious variation with depth, taking values that interpolate between surface and bulk values, and depend mainly on helium ion fluences. The S-W plot indicates that two types of defects have formed after ion implantation.  相似文献   

8.
GaN thermal stability is the limiting factor of the growth rate for epitaxially grown films and of the thermal annealing of defects. As a consequence, this issue has been extensively studied for more than one decade. There are, however, substantial differences in the reported kinetics and presumed mechanisms of decomposition, which are primarily related to the reactor design thus, reflecting the complexity of chemical reactions involved. We report here on the use of 1.7 MeV He-ion RBS/channeling for the study of thermal decomposition of MOVPE grown GaN and AlxGa1−xN (x = 0.05-0.5) layers. These layers with thickness of 320 nm were grown on sapphire substrates with 20 nm AlN nucleation layer. Prior to annealing samples were characterized by RBS/channeling, selected samples were also studied by SEM. Thermal treatment was performed in the MOVPE reactor in the temperature range 900-1200 °C in the N2 atmosphere. RBS/channeling analysis provided data on layer thickness, composition and evolution of ingrown defects. GaN decomposition starts at 900 °C and results in the reduction of the layer thickness without observable changes of the film composition. The presence of large density of GaN hillocks on the surface was revealed by SEM after annealing at 1000-1050 °C. Remarkable stability of AlxGa1−xN was observed, this alloy remains unchanged upon annealing at 1200 °C/6 h even for x as low as 0.05.  相似文献   

9.
The effect of annealing on defects and the formation of Xe bubbles were investigated in zirconium oxycarbide implanted with 800-keV136Xe2+ ions at two fluences 1 × 1015 and 1 × 1016 Xe/cm2. Doppler broadening technique combined with slow positron beam was used. The analysis of the S depth profiles and S-W maps revealed that in the as-implanted samples at both fluences Xe bubbles are not formed. The post-implantation annealing of the samples implanted at 1 × 1016 Xe/cm2 caused formation of Xe bubbles. The response of the lower implantation dose samples to this post implantation annealing was found rather complicated and is discussed.  相似文献   

10.
The defect recovery in proton irradiated Ti-modified D9 steel has been studied by positron annihilation isochronal and isothermal annealing measurements. D9 samples have been irradiated with 3 MeV protons followed by isochronal annealing at various temperatures in the range of 323 to 1273 K. The dramatic decrease in positron annihilation parameters, viz. positron lifetime and Doppler S-parameter, around 500 K indicates the recovery of vacancy-defects. A clear difference in the recovery beyond 700 K is observed between solution annealed and cold worked state of D9 steel due to the precipitation of TiC in the latter. Isothermal annealing studies have been carried out at the temperature wherein vacancies distinctly migrate. Assuming a singly activated process for defect annealing, the effective activation energy for vacancy migration is estimated to be 1.13 ± 0.08 eV.  相似文献   

11.
The construction of a dual parameter spectrometer utilizing the detection of the β+ -γ cascade is presented. The lifetimes of the positrons were measured with start pulses from a thin transmission β+ scintillator and with stop pulses from a γ scintillator. The pair momentum distribution was measured with a GeLi spectrometer using Doppler broadening of the annihilation γ line. The data accumulation rate of the dual parameter spectrometer was ~ 8 s?1 with a 10 μCi68Ge positron source. The resolution of the lifetime measurement was ~ 330 ps (fwhm) and the efficiency of the GeLi detector ~10%. The dual parameter spectrometer has been applied to study aluminium samples as a function of their deformation and annealing. The dual parameter spectra were analyzed by calculating the S parameters from the Doppler broadenings as a function of the positron lifetime. The results indicate a strong increase of the S parameter values in the longer lifetimes measured with the samples containing defects.  相似文献   

12.
A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator’s radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.  相似文献   

13.
The effect of rolling and annealing on the microstructure and high temperature creep properties of alloy 617 were investigated. Two types of foil specimens with different thickness reductions were prepared by thermo-mechanical processing. Recrystallization and grain growth were readily observed at specimens annealed at 950 and 1100 °C. The uniform coarse grains increase resistance against creep deformation. The grain size effect in creep deformation was dominant up to 900 °C, while dynamic recrystallization effect became dominant at 1000 °C. Dynamic recrystallization was observed in all the creep deformed foils, even though some specimens had already been (statically) recrystallized during annealing. Steady state creep rates decreased with increasing annealing temperature in the less rolled foils. The apparent activation energy Qapp for the creep deformation increased from 271 to 361 kJ/mol as the annealing temperature increased from 950 to 1100 °C.  相似文献   

14.
We have studied the influence of the ion species, ion energy, fluence, irradiation temperature and post-implantation annealing on the formation of shallow dislocation loops in silicon, for fabrication of silicon light emitting diodes. The substrates used were (1 0 0) Si, implanted with 20-80 keV boron at room temperature and 75-175 keV silicon at 100 and 200 °C. The implanted fluences were from 5 × 1014 to 1 × 1015 ions/cm2. After irradiation the samples were processed for 15 s to 20 min at 950 °C by rapid thermal annealing. Structural analysis of the samples was done by transmission electron microscopy and Rutherford backscattering spectrometry. In all irradiations the silicon substrates were not amorphized, and that resulted in the formation of extrinsic perfect and faulted dislocation loops with Burgers vectors a/2〈1 1 0〉 and a/3〈1 1 1〉, respectively, sitting in {1 1 1} habit planes. It was demonstrated that by varying the ion implantation parameters and post-irradiation annealing, it is possible to form various shapes, concentration and distribution of dislocation loops in silicon.  相似文献   

15.
At room temperature, single-crystal silicon was implanted with Cu+ ions at an energy of 80 keV using two doses of 5 × 1015 and 1 × 1017 Cu+ cm−2. The samples were heat treated by conventional thermal annealing at different temperatures: 200 °C, 230 °C, 350 °C, 450 °C and 500 °C. The interdiffusion and solid-state reactions between the as-implanted samples and the as-annealed samples were investigated by means of Rutherford backscattering spectrometry (RBS) and X-ray diffraction (XRD). After annealing at 230 °C, the XRD results of the samples (subject to two different doses) showed formation of Cu3Si. According to RBS, the interdiffusion between Cu and Si atoms after annealing was very insignificant. The reason may be that the formation of Cu3Si after annealing at 230 °C suppressed further interdiffusion between Si and Cu atoms.  相似文献   

16.
Low temperature silicon dioxide layers (LTO), deposited on crystalline silicon substrates, and thermally densified at 750 °C for 90 min or 900 °C for 30 min, jointly with thermally grown silicon dioxide layers, were irradiated with low fluence 11 MeV Ti ions. A selective chemical etch of the latent tracks generated by the passage of swift ions was performed by wet or vapour HF solution. The wet process produced conically shaped holes, while the vapour procedure generated almost cylindrical nanopores. In both cases thermal SiO2 showed a lower track etching velocity Vt, but with increasing the densification temperature of the LTO samples, the Vt differences reduced. LTO proved to be suitable for wet and vapour ion track formation, and, as expected, for higher densification temperatures, its etching behaviour approached that of thermal silicon dioxide.  相似文献   

17.
Light emission from silicon dioxide doped with excess silicon by silicon ion implantation was investigated. Photoluminescence of silicon dioxide after silicon ion implantation and subsequent annealing at temperatures exceeding 1000 °C was observed. Excitation with monochromatic light with wavelength ranging from λ = 488 nm to λ = 266 nm leads to wide wavelength band emission ranging from about 650 nm up to about 850 nm with a maximum located at about 750 nm. This red/infrared photoemission is attributed to silicon nanocrystals created in silicon dioxide matrix. However, the same material used in electroluminescent experiments emitted blue and green light as well. In this paper the results of photo- and ionoluminescence experiments will be presented. The interest of the paper is focused on the problem of identification of different regions in the structure responsible for light emission of different wavelengths.  相似文献   

18.
We have studied the formation of InAs precipitates with dimensions of several nanometers in silicon by means of As (245 keV, 5 × 1016 cm−2) and In (350 keV, 4.5 × 1016 cm−2) implantation at 500 °C and subsequent annealing at 900 °C for 45 min. RBS, SIMS, TEM/TED, RS and PL techniques were used to characterize the implanted layers. The surface density of the precipitates has been found to be about 1.2 × 1011 cm−2. Most of the crystallites are from 3 nm to 6 nm large. A band at 1.3 μm has been registered in the low-temperature PL spectra of (As + In) implanted and annealed silicon crystals. The PL band position follows the quantum confinement model for InAs.  相似文献   

19.
Positron annihilation spectroscopy (PAS) and a computer simulation were used to investigate a defect production in reactor pressure vessel (RPV) steels irradiated by neutrons. The RPV steels were irradiated at 250 °C in a high-flux advanced neutron application reactor. The PAS results showed that mainly single vacancies were created to a great extent as a result of a neutron irradiation. Formation of vacancies in the irradiated materials was also confirmed by a coincidence Doppler broadening measurement. For estimating the concentration of the point defects in the RPV steels, we applied computer simulation methods, including molecular dynamics (MD) simulation and point defect kinetics model calculation. MD simulations of displacement cascades in pure Fe were performed with a 4.7 keV primary knock-on atom to obtain the parameters related to displacement cascades. Then, we employed the point defect kinetics model to calculate the concentration of the point defects. By combining the positron trapping rate from the PAS measurement and the calculated vacancy concentrations, the trapping coefficient for the vacancies in the RPV steels was determined, which was about 0.97 × 1015 s−1. The application of two techniques, PAS and computer simulation, provided complementary information on radiation-induced defect production.  相似文献   

20.
Flash-assisted rapid thermal processing (fRTP) has gained considerable interests for fabrication of ultra-shallow junction in silicon. fRTP can significantly reduce boron diffusion, while attaining boron activation at levels beyond the limits of traditional rapid thermal annealing. The efficiency of fRTP for defect annealing, however, needs to be systematically explored. In this study, a (1 0 0) silicon wafer was implanted with 500 eV boron ions to a fluence of 1 × 1015 cm−2. fRTP was performed with peak temperatures ranging from 1100 °C to 1300 °C for approximately one milli-second. High resolution transmission electron microscopy and secondary ion mass spectrometry were performed to characterize as-implanted and annealed samples. The study shows that fRTP at 1250 °C can effectively anneal defects without causing boron tail diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号