首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of a projectile with a solid has been considered in detail. It has been found that any collision cascade generated by a projectile can be characterized by the average kinetic energy of cascade atoms that represents an “instantaneous temperature” of the cascade during its very short lifetime (10−12 s). We refer to this value as the “dynamic temperature” in order to emphasize the fact that cascade atoms are in a dynamic equilibrium and have a definite energy distribution. The dynamic temperature defines the electron distribution in the cascade area and, hence, the ionization probability of sputtered atoms. The energy distribution of cascade atoms and, as a consequence, the dynamic temperature can be found experimentally by measuring the energy distribution of sputtered atoms. The calculated dynamic temperature has been found to be in good agreement with the experimental data on ion formation in the case of cesium and oxygen ion sputtering of silicon. Based on the developed model we suggest an experimental technique for a radical improvement of the existing cascade sputtering models.  相似文献   

2.
The ionization probability of atoms sputtered from a clean polycrystalline metal surface was measured for different charge states of the projectile used to bombard the sample. More specifically, a polycrystalline indium surface was irradiated with Ar+ and Ar0 beams of energies between 5 and 15 keV, and In+ secondary ions and neutral In atoms emitted from the surface were detected under identical experimental conditions regarding the sampled emission angle and energy. The resulting energy integrated ionization probability of sputtered In atoms is consistently found to be smaller for neutral projectiles, the difference decreasing with decreasing impact energy. The observed trends agree with those measured for kinetic electron emission, indicating that secondary ion formation is at least partly governed by kinetic substrate excitation.  相似文献   

3.
The paper addresses CuPt alloy sputtering by Ar ions and discusses the well-known experiment performed by Andersen et al. 25 years ago, but not yet properly explained. The atomistic (binary-encounter) simulation has been applied to extract the concentrations of surface Cu and Pt atoms from the experimental data. The results of simulations favor segregation of Cu at all bombarding energies studied experimentally (1.25-320 keV). It has been shown that some mysterious results of the experiment can be explained by a reconstruction of the surface undergoing sputtering. For forecasting purposes, the sputtering of CuPt alloy with 0.25-1 keV Ar ions is also considered.  相似文献   

4.
Large gas cluster impacts cause unique surface modification effects because a large number of target atoms are moved simultaneously due to high-density particle collisions between cluster and surface atoms. Molecular dynamics (MD) simulations of large gas cluster impacts on solid targets were carried out in order to investigate the effect of high-density irradiation with a cluster ion beam from the viewpoint of crater formation and sputtering. An Ar cluster with the size of 2000 was accelerated with 20 keV (10 eV for each constituent atom) and irradiated on a Si(1 0 0) solid target consisting of 2 000 000 atoms. The radius of the Ar cluster was scaled by ranging from 2.3 nm (corresponding to the solid state of Ar) to 9.2 nm (64× lower density than solid state). When the Ar cluster was as dense as solid state, the incident cluster penetrated the target surface and generated crater-like damage. On the other hand, as the cluster radius increased and the irradiation particle density decreased, the depth of crater caused by cluster impact was reduced. MD results also revealed that crater depth was mainly dominated by the horizontal scaling rather than vertical scaling. A high sputtering yield of more than several tens of Si atoms per impact was observed with clusters of 4-20× lower volume density than solid state.  相似文献   

5.
Classical molecular dynamics simulations are used to examine 1 keV Ar atom bombardment on the surface of poly(methyl methacrylate) (PMMA), which induces sputtering and chemical modifications to the surface. The simulations are carried out at various surface temperatures that range from 200 to 600 K. The results indicate that different fragments of PMMA, as characterized by their mass, are preferentially sputtered from the surface at the various temperatures considered. In addition, the simulations predict that small fragments are produced by the high energy deposition process. However, larger sized fragments are generated when the surface temperature is close to the glass transition temperature of PMMA. The atomic-scale processes by which these occur are elucidated by the simulations.  相似文献   

6.
Temperature dependence of sputtering yield is studied through molecular dynamics (MD) simulation that is performed for Ag sputtered by 12.6 keV Ar impacting at normal incidence. The target temperature is considered from 300 to 1235 K. It is found that the target temperature has little effect on the monomer yield because it comes from the energetic collision cascade. On the other hand, the sputtered cluster yield increases with the target temperature. It seems that the sputtered cluster is produced due to the thermal spike near the surface and the thermal spike is strongly influenced by the target temperature.  相似文献   

7.
Depth profiling experiments using secondary ion spectrometry (SIMS) have shown effects that are characteristic to the pairing of the projectile with a Si target. Previous molecular dynamics simulations demonstrate that this unusual behavior is due to the fact that strong covalent bonds are formed between the C atoms in the projectile and the Si atoms in the target, which result in the implantation of carbon into the solid. The focus of this paper is to understand how the formation of chemical bonds affects the net sputtered yield. The results of molecular dynamics simulations of the keV bombardment of Si with C60, Ne60 and 12Ne60 at normal incidence are compared over a range of incident kinetic energies from 5 to 20 keV. The net yields with Ne60 and 12Ne60 are significantly greater than with C60 at all incident kinetic energies, with 12Ne60 having the largest values. Application of the mesoscale energy deposition footprint (MEDF) model shows that the initial deposition of energy into the substrate is similar with all three projectiles. Snapshots of the initial pathway of the projectile atoms through the substrate show a similar lateral and vertical distribution that is centered in the region of the energy footprint. Therefore, the reason for the reduced yield with C60 is that the C atoms form bonds with the Si atoms, which causes them to remain in the substrate instead of being sputtered.  相似文献   

8.
The survival of ions during grazing scattering of keV He+ ions from a clean Ni(1 1 0) surface is studied as function of target temperature. We observe ion fractions in the scattered beams of typically 10−3 which show a slight increase with temperature of the target surface. From computer simulations of projectile trajectories we attribute this enhancement for ion fractions to effects of thermal vibrations of lattice atoms on the survival of ions in their initial charge state. Based on concepts of Auger neutralization, we discuss the role of the spin polarization of target electrons on charge transfer. We do not find corresponding signatures in our data and conclude that in the present case of Ni(1 1 0) the spin polarization has to be small.  相似文献   

9.
Sputtering of Ni5Pd and NiPd5 alloys by 10 keV Ar ions has been studied using the binary-collision simulation. Special attention was given to the angular distributions of sputtered atoms at the steady-state conditions. The results of simulations were compared with the experimental data published recently. For both targets, the concentrations of Ni and Pd atoms in the top monolayer were extracted from the experimental data. The results of simulations favor segregation of Pd in Ni5Pd and segregation of Ni in NiPd5. The total concentration of surface vacancies was found to be about 10-30%.  相似文献   

10.
The evolution of nanoscale ripple patterns during sub-keV ion sputtering of thermally grown, fused and single crystalline SiO2 surfaces has been investigated by means of atomic force microscopy. For all three materials, different dependencies of the ripple wavelength and the surface roughness on the ion fluence have been found. Within the Bradley-Harper model of pattern formation, the observed differences are consistent with different amounts of surface and near-surface mass transport by ion-enhanced viscous flow which might result from different surface energies of the SiO2 specimens.  相似文献   

11.
A spectral structure of the radiation (190-590 nm) emitted during sputtering of polycrystalline Cu, Be and CuBe targets by Kr+ ions with 5 keV have been presented. Evolution of surface composition during ion beam sputtering is investigated. Several time scales are distinguished, corresponding to different processes: the elimination of surface contaminants, the removal of the corroded layer. The implications for the use of ion beam optical spectroscopy in surface analysis are discussed. In the case of Be and Cu98 Be2, a molecular structure appears between 492 nm and 502 nm. It is similar for both samples and is ascribed to de-excitation of BeH.  相似文献   

12.
Using molecular-dynamics simulation, we study the cluster-induced sputtering of a diatomic (O2) and a triatomic (H2O) molecular target and compare it to the sputtering of an atomic target (Ar). In all three systems, sputtering occurs by the flow of gasified material out of the spike volume into the vacuum above it. Above a threshold, the sputter yield and also the number of dissociations and reactions increase linearly with the total impact energy. The number of reactions occurring is significantly higher than the number of surviving dissociations. The degrees of freedom of the sputtered molecules are not in thermal equilibrium with each other. While for the diatomic target, the internal energy amounts to only 10-20% of the translational energy, it is 40% for H2O. The translational energy distributions of sputtered monomers are strongly reduced at high energies due to molecule dissociations.  相似文献   

13.
侧重研究了入射Ar+离子不同剂量轰击时表面微形貌和溅射原子角分布之间的关联,并建议用“元素按靶点表面微形貌特征局域富集模型”来解释溅射原子角分布形状以及择优溅射曲线的变化;发现其结果与实验相符合。  相似文献   

14.
The angular distribution of Ga and As sputtered from Gallium Arsenide (1 0 0) by a Cs+ ion beam was experimentally measured through a collector technique allowing modifications of the energy and incidence angle of the ion beam. The impact energy was varied in the range of 2-10 keV and the angle of incidence from 30° to 60°.The angular distributions of emitted matter are determined by means of SIMS depth profiles. Our series of experiments show an evolution of the preferential direction of emission as well as the spreading around this direction in function of the characteristics of the ion beam.The second objective is the study of the evolution of the stoichiometry of the deposit in function of the emission angle. A decrease of the As/Ga ratio around the preferential direction of emission and an increase of this ratio for oblique emission are observed for different conditions of primary bombardment. Considering that the angular distribution depends on the depth of origin, our results suggest that the Cs+ bombardment changes the stoichiometry of the near-surface layers of the sample with an enrichment of As in the outmost layers while the sub-surface region is impoverished in As due to preferential sputtering.  相似文献   

15.
Using molecular-dynamics simulation, we study the sputtering of a Pt(1 1 1) surface under oblique and glancing incidence 5 keV Ar ions. For incidence angles larger than a critical angle ?c, the projectile is reflected off the surface and the sputter yield is zero. We discuss the azimuth dependence of the critical angle ?c with the help of the surface corrugation felt by the impinging ion. If a step exists on the surface, sputtering occurs also for glancing incidence ?>?c. We demonstrate that for realistic step densities, the total sputtering of a stepped surface may be sizable even at glancing incidence.  相似文献   

16.
Sputtering processes of protons from a polycrystalline Al surface interacting with Arq+ (q = 3-14) ions at a grazing incidence angle (∼0.5°) were investigated. The intensity of protons (IH) detected in coincidence with scattered Ar atoms was measured as a function of q. IH saturated at q ? 10, although it increased rapidly with q at 3 ? q ? 8. The angular distribution of protons with low kinetic energy (?2 eV) began to deviate from the cosine distribution and assumed a rather flat equidistribution as q increased. To analyze the sputtering processes of protons at the grazing incidence angle, a modified model of the “above-surface potential sputtering model” was proposed by considering image acceleration of projectile ions.  相似文献   

17.
18.
In order to study the sputtering of secondary ions from well characterized surfaces, we constructed a new UHV system named AODO. It consists of a detector chamber, a target preparation and analysis chamber, and a target transfer rod. We present the lay-out of this new instrument. The detector allows measuring the time-of-flight of emitted secondary ions and their position on a 2D imaging detector (XY-TOF imaging technique). The analysis chamber can be used to study surface modification by means of LEED (low energy electron diffraction). We show preliminary results of the evolution of the LEED patterns as a function of the projectile fluence during irradiation of HOPG (highly oriented pyrolytic graphite) with slow Xe14+ ions at ARIBE (the low energy, highly charged ion beam line of the French heavy ion accelerator GANIL).  相似文献   

19.
We have calculated charge fractions and angular distributions of scattered He atoms resulting from the interaction of keV He+ beams at grazing incidences with an Al(1 1 1) surface. Several improvements over our earlier approaches have been incorporated. These are a more sophisticated RPA image potential for the ion-metal interaction as well as kinematic factors affecting the static rates for the Auger transfer mechanisms. For interaction cases in which both perpendicular and parallel velocities are low, we obtain angular distributions which have a better agreement with the experimental data than our earlier version of the theory, although still the theoretical results do not reach total neutralization of the beam as the experimental results show.  相似文献   

20.
Single (CO2)N (N = 1-20) cluster impact on three different carbon-based surfaces of fullerite (1 1 1), graphite and diamond (1 0 0) has been investigated by MD simulations with the cluster collision energy from 5 to 14 keV/cluster as a first step toward the general modeling of the reactive sputtering by cluster impact of a solid surface. A crater permanently remained on the fullerite and graphite surfaces while it was quickly replenished with fluidized carbon material on the diamond surface. In spite of the smaller crater size as well as the crater recovery resulting in the reduction of the surface area, the sputtering yields were the highest on diamond. The effective energy deposition near the surface contributes to the temperature rise and consequent sputtering seemed highly reduced due to the collision cascades especially on the fullerite target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号