首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Classical molecular dynamics simulations have been carried out to study the primary damage due to α-decay self-irradiations in single-, bi-, and poly-crystal UO2 matrices. In all the cases no amorphization has been found, only the creation of few point defects is observed. However, in all grain boundary systems numerous point defects are created along the interfaces. Furthermore, cascade morphologies depend strongly on the grain boundary structure. For symmetrical tilt grain boundaries with small misorientation angles (lower than 20°) the structure at the grain boundaries is composed of edge dislocations, whereas for higher misorientation angles is formed by Schottky defects. The grain boundary structure in the poly-crystal is found to be highly disordered. For the last two systems, cascades seem stopped by the interfaces unlike those with edge dislocation grain boundaries. These types of interface act like sink which traps moving atoms.  相似文献   

2.
The influence of grain boundaries on the primary damage state created by a recoil nucleus in UO2 matrix is studied here by molecular dynamics simulations. This study is divided in two steps: (1) the study of the structural properties of several symmetrical tilt boundaries for different misorientation angles ranging from 12.7° to 61.9°; and (2) the study of displacement cascades near these grain boundaries. For all the grain boundaries studied, the structure around the interface up to about 2 nm presents a perturbed but stable fluorite lattice. The type of defect at the interface depends directly on the value of the misorientation angles. For the small angles (12.7° and 16.3°) the interface defects correspond to edge dislocations. For higher misorientation angles, a gap of about 0.3 nm exists between the two halves of the bicrystal. This gap is composed of Schottky defects involving numerous vacancies along the interface. About 10 keV displacement cascades were initiated with an uranium projectile close to the interface. In all the cases, numerous point defects are created in the grain boundary core, and the mobility of these defects increases. However, cascade morphologies depend strongly on the grain boundary structure. For grain boundaries with edge dislocations, the evolution of the displacement cascades is similar to those carried out in monocrystals. On the other hand, cascades initiated in grain boundaries with vacancy layer defects present an asymmetry on the number of displaced atoms and the number of point defects created.  相似文献   

3.
Recent experimental works devoted to the phenomena of mixing observed at metallic multilayers Ni/Si irradiated by swift heavy ions irradiations make it necessary to revisit the insensibility of crystalline Si under huge electronic excitations. Knowing that Ni is an insensitive material, such observed mixing would exist only if Si is a sensitive material. In order to extend the study of swift heavy ion effects to semiconductor materials, the experimental results obtained in bulk silicon have been analyzed within the framework of the inelastic thermal spike model. Provided the quenching of a boiling (or vapor) phase is taken as the criterion of amorphization, the calculations with an electron-phonon coupling constant g(300 K) = 1.8 × 1012 W/cm3/K and an electronic diffusivity De(300 K) = 80 cm2/s nicely reproduce the size of observed amorphous tracks as well as the electronic energy loss threshold value for their creation, assuming that they result from the quenching of the appearance of a boiling phase along the ion path. Using these parameters for Si in the case of a Ni/Si multilayer, the mixing observed experimentally can be well simulated by the inelastic thermal spike model extended to multilayers, assuming that this occurs in the molten phase created at the Ni interface by energy transfer from Si.  相似文献   

4.
The damage accumulation in ion-implanted semiconductors is analysed using Rutherford backscattering spectrometry (RBS). When energetic ions are implanted in a material, they transfer their energy mainly into atomic collision processes (nuclear energy loss) and in electronic excitations (electronic energy loss). For a given material this primary energy deposition is determined by the mass and energy of the implanted ions and the ion fluence (number of ions per unit area). However, the damage concentration which is measured after implantation does not only depend on the primary energy deposition, but is strongly influenced by secondary effects like defect annealing and defect transformation. For the latter processes the target temperature and the ion flux (number of ions per unit area and time) play an important role. In this presentation the influence of the various parameters mentioned above on the damage accumulation is demonstrated for various materials. Simple empirical models are applied to get information about the processes occurring and to systematize the results for the various semiconductors.  相似文献   

5.
In order to study the radiation effects in BaTiO3 ferroelectric crystal, a previously developed shell model is modified. The modifications include adding the ZBL universal potentials at short distances and distance-dependent spring constants for core-shell interactions. The phase transition sequences in BaTiO3 were correctly reproduced using molecular dynamics simulations with this modified shell model. Also, the calculated Frenkel pair formation energies agree well with results obtained by first principles calculations, which suggests that this model is suitable for the simulation of the radiation effects in BaTiO3. The dependence of polarization on the number of oxygen vacancies was also studied.  相似文献   

6.
Transmission electron microscopy (TEM) is a standard technique to characterize microelectronic device structures. As structures shrink to the nanoscale, surface damage produced by focused ion beam (FIB) sample preparation destroying the region of interest and degrading the resolution of TEM images becomes increasingly a problem. The thickness of the damaged layer at the sidewalls of a prepared cross section is around 20-30 nm for silicon at typical beam energies of 30 keV. In order to reduce these artifacts to a minimum low beam energies have been proposed for FIB polishing. We use a combination of molecular dynamics simulations and experiments to assess the influence of the focused ion beam on the surface structure of silicon for beam energies ranging from 1-5 keV and a grazing angle of 10° typically used in low voltage FIB polishing. Under these conditions, the thickness of the amorphous layer depends linearly on the beam energy. Intrinsic surface stresses introduced by FIB are always tensile and of a magnitude of around 1 GPa.  相似文献   

7.
Molecular dynamics simulations have been carried out to study the influence of grain boundaries in stoichiometric UO2 on uranium and oxygen self-diffusions over a large range of temperature varying from 300 K to 2100 K. The study was carried out on two symmetrical tilt grain boundaries, Σ5 and Σ41, which have respectively two different atomic structures. Firstly, the study of the temperature effect on the grain boundary core structure is presented. With the raise of temperature, the grain boundary core grows with an increase of disorder. Secondly, self-diffusion near both grain boundaries is studied. It has been found that grain boundaries accelerate the uranium and oxygen self-diffusion rates over several nanometres from the grain boundary interface. Uranium and oxygen self-diffusion are anisotropic, with a high acceleration along the grain boundary interface. Using the self-Van Hove correlation functions, hopping mechanisms were identified for Σ41 in all directions while for Σ5 hopping mechanism takes place along the grain boundary interface and random diffusion appears in the perpendicular direction of the grain boundary plane.  相似文献   

8.
The recombination behaviors of cation and anion Frenkel pairs have been investigated in four fluorite structure compounds: Li2O, CaF2, CeO2 and UO2. The calculations have been done in the framework of empirical potentials molecular dynamics simulations. They have revealed that the recombination processes are strongly dependent on the configuration (i.e. the sublattice, the distance between the Frenkel pairs and the local topology of the interstitials). Each configuration shows the same recombination process whatever the chemistry (i.e. for the four compounds Li2O, CaF2, CeO2 and UO2), such that the recombination processes are related to the crystal structure of the materials. Two different recombination regimes have been identified: either spontaneous (i.e. temperature independent) or thermally activated. The recombinations are direct or occur through replacement sequences.  相似文献   

9.
Tritium detrapping behavior in neutron-irradiated ternary lithium oxides was investigated by the comparison of the annihilation of irradiation defects with the tritium release. It was revealed that the annihilation of irradiation defects would consist of two processes; namely the fast and the slow ones. The slow annihilation process has correlation with the tritium release, indicating that E′-center or F+-center could act as tritium trapping site, and from its activation energy of each sample, the annihilation of E′-center and F+-center could be attributed to the recovery of oxygen via diffusion, triggering the tritium release. Meyer-Neldel plots of these results indicate that the slow annihilation process was governed by the formation entropy of a pair of vacancy and interstitial atom of oxygen. Therefore, the trapped tritium would be detrapped by oxygen recovery to E′-center or F+-center, and its kinetics would be determined by the population of oxygen vacancy under thermal equilibrium.  相似文献   

10.
The helium bubble has significant consequence to the mechanical properties of irradiated materials. The influence of embedded helium bubble to the elastic properties of aluminum has been investigated by molecular dynamics (MD) simulations. The interaction between aluminum atoms and the interaction between helium atoms are described by an embedded-atom-method (EAM) many-body potential and a pair potential, respectively. Another pair potential, which is parameterized based on ab initio calculation, is used to describe the interaction between aluminum and helium atoms, and its validation under pressure up to 10 GPa is reasonable demonstrated by the electron density calculation. For the composite system consisting of 62,500 aluminum atoms and one helium bubble with various diameters, its elastic constants are calculated properly by stress-strain relation rather than by energy-strain relation. The results show that elastic constants c11, c12 and c44 decrease with increasing of the volume of the helium bubble, and remain almost invariable with the internal pressure of the helium bubble. The main reason is under high-pressure the helium is softer than aluminum, and the soft effect overwhelms the hard effect of internal pressure of helium bubble.  相似文献   

11.
The void ordering has been observed in very different radiation environments ranging from metals to ionic crystals. In the present paper the ordering phenomenon is considered as a consequence of the energy transfer along the close packed directions provided by self-focusing discrete breathers. The self-focusing breathers are energetic, mobile and highly localized lattice excitations that propagate great distances in atomic-chain directions in crystals. This points to the possibility of atoms being ejected from the void surface by the breather-induced mechanism, which is similar to the focuson-induced mechanism of vacancy emission from voids proposed in our previous paper. The main difference between focusons and breathers is that the latter are stable against thermal motion. There is evidence that breathers can occur in various crystals, with path lengths ranging from 104 to 107 unit cells. Since the breather propagating range can be larger than the void spacing, the voids can shield each other from breather fluxes along the close packed directions, which provides a driving force for the void ordering. Namely, the vacancy emission rate for “locally ordered” voids (which have more immediate neighbors along the close packed directions) is smaller than that for the “interstitial” ones, and so they have some advantage in growth. If the void number density is sufficiently high, the competition between them makes the “interstitial” voids shrink away resulting in the void lattice formation. The void ordering is intrinsically connected with a saturation of the void swelling, which is shown to be another important consequence of the breather-induced vacancy emission from voids.  相似文献   

12.
Germanium was implanted with 5 keV H and D ions at −120 °C or room temperature and thermally annealed in several steps. The samples were analysed at various stages by atomic force microscopy, ion channeling and Raman spectroscopy of Ge-H/D local vibration modes. The results are discussed in comparison with those in the well studied silicon. In general, the evolution of the different types of defects, in germanium at a given temperature, tends to be similar to that of the corresponding defects in silicon at 100-300 °C higher temperature. However, the behaviour of the defects detected by ion channeling (interstitials, lattice distortions) often appears unrelated to the chemical evolution measured by Raman scattering and to the temperature and isotope dependence of blistering.  相似文献   

13.
The behaviour of caesium in nuclear fuels is investigated using density functional theory (DFT). In a first step, the incorporation and solution energies of Cs in pre-existing trap sites of UO2 (vacancies, interstitials, U-O di-vacancy and Schottky trio defects) are calculated using the projector-augmented-wave (PAW) derived pseudopotentials as implemented in the Vienna ab initio simulation package (VASP). Correlation effects are taken into account within the DFT + U approach. The solubility of caesium is found to be very low, in agreement with experimental data. The migration of Cs is found to be highly anisotropic, it is controlled by uranium diffusion with an Arrhenius activation energy of 4.8 eV in hyperstoichiometric UO2+x, in good agreement with experimental values.  相似文献   

14.
We have investigated the response of radiochromic films (MD-55 and HD-810) exposed to protons of 0.6 MeV. Each film is bombarded with a proton beam in an angular geometry, in such a way that the absorbed dose is related to angle. Depending on the energy and the angular fluence, the irradiated volume is total or partial. We compare the dose of these irradiated films with fully irradiated films exposed to γ radiation from a 60Co calibrated source.  相似文献   

15.
The purpose of this study is to investigate the modes of vibration of the self-interstitial atoms and the vacancy in bcc iron and to estimate how the vibrational properties can affect the stability of these defects. The phonon density of states of the vacancy and the self-interstitials have been calculated within the quasi harmonic approximation using density functional theory calculations. It was observed that self-interstitial atoms have several localized high frequency modes of vibration related to the stretching of the dumbbell bond, but also soft modes favoring their migration. From the phonon density of states, the vibrational contributions to the free energy have been estimated for finite temperatures. Results are compared to previous work performed by others using empirical potentials. We found a rather large formation entropy for the vacancy, kB. Our results show that the vibrational entropy can have a significant influence on the formation of the point defects even at moderate temperature. Possible consequences on the mobility of these defects are also discussed.  相似文献   

16.
Irradiation of graphite, commonly used in nuclear power plants, is known to produce structural damage. Here, experimental and computational methods are used to study defect formation in graphite during Ar irradiation at incident energies of 50 eV. The experimental samples are analyzed with scanning tunneling microscopy to quantify the size distribution of the defects that form. The computational approach is classical molecular dynamic simulations that illustrate the mechanisms by which the defects are produced. The results indicate that defects in graphite grow in concentrated areas and are nucleated by the presence of existing defects.  相似文献   

17.
Recent studies have indicated that, at temperatures relevant to fast reactors and light water reactors, void swelling in austenitic alloys progresses more rapidly when the radiation dose rate is lower. A similar dependency between radiation-induced segregation (RIS) and dose rate is theoretically predicted for pure materials and might also be true in complex engineering alloys. Radiation-induced segregation was measured on 304 and 316 stainless steel, irradiated in the EBR-II reactor at temperatures near 375 °C, to determine if the segregation is a strong function of damage rate. The data taken from samples irradiated in EBR-II is also compared to RIS data generated using proton radiation. Although the operational histories of the reactor irradiated samples are complex, making definitive conclusions difficult, the preponderance of the evidence indicates that radiation-induced segregation in 304 and 316 stainless steels is greater at lower displacement rate.  相似文献   

18.
To apply radiation-induced coloration of glasses as a reversible glass-coloring technique, we studied the influence of various additive ions incorporated into a soda-lime silicate glass on the optical density and stability of the color induced by X-ray irradiation. Absorption spectra before and after irradiation are discussed in the comparison with those of the undoped soda-lime silicate glass. Additive ions were incorporated as metal oxides, namely TiO2, V2O5, Fe2O3, ZnO, Ga2O3, GeO2, ZrO2, Nb2O3, MoO3, Ag2O, In2O3, SnO, SnO2, CeO2, Eu2O3, Ta2O5, WO3 and Bi2O3. Among them, TiO2, GeO2, Nb2O3, MoO3, Ag2O, In2O3, Eu2O3, Ta2O5, WO3 and Bi2O3 have a large effect on optical density. The optical densities in the visible region for glasses doped with these oxides were much stronger than for undoped soda-lime silicate glass. On the other hand, incorporation of Fe2O3, SnO and CeO2 reduced the optical density. Over longer periods the coloration of the undoped glass was one of the most stable while those of the Fe2O3, SnO and CeO2-doped glasses soon faded.  相似文献   

19.
Computer simulations of instantaneous thermal heating due to a laser pulse is modeled as a pulse occurring over 1 or 100 fs, during which time the atoms within a cylinder are given excess kinetic energy to mimic the effect of adding energy locally to a system by a laser. The response of the material under conditions in which a similar amount of energy is dumped within 1 fs versus over a 100 fs pulse with two distinct shapes, square and Gaussian-like, is explored. Key physics disclosed is that with a pulse width of 100 fs, as the energy is being added it begins to dissipate away from region where it is added. With a 1 fs (instantaneous) pulse there is greater initial ballistic behavior than when it is dumped over a 100 fs period. In the latter, there are localized hot spots displaying ballistic behavior.  相似文献   

20.
Large erosion (∼1.1 × 104 atoms/ion) of H from hydrogenated MCT wafers is observed due to the bombardment with 80 MeV Ni9+ ions. The initial H areal concentration and hydrogen depletion rate is monitored by elastic recoil detection analysis. The ion-damaged zones from where depletion of H takes place have been calculated from fluence-dependent hydrogen areal content analysis. The results are explained on the basis of the thermal spike model of ion-solid interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号