首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stopping cross sections ε(E) of silicon for protons and alpha particles have been measured over the velocity range 0.3-1.2 MeV/u from a Si//SiO2//Si (SIMOX) target using the Rutherford backscattering spectrometry (RBS) with special emphasis put on experimental aspects. A detection geometry coupling simultaneously two solid-state Si detectors placed at 165° and 150° relative to each side of the incident beam direction was used to measure the energies of the scattered ions and determine their energy losses within the stopping medium. In this way, the basic energy parameter, Ex, at the Si/SiO2 interface for a given incident energy E0 is the same for ions backscattered in the two directions off both the Si and O target elements, and systematic uncertainties in the ε(E) data mainly originating from the target thickness are significantly minimized. A powerful computer code has been elaborated for extracting the relevant ε(E) experimental data and the associated overall uncertainty that amounts to less than 3%. The measured ε(E) data sets were found to be in fair agreement with Paul’s compilation and with values calculated by the SRIM 06 computer code. In the case of 4He+ ions, experimental data for the γ effective charge parameter have been deduced by scaling the measured stopping cross sections to those of protons crossing the same target with the same velocity, and compared to the predictions of the SRIM 06 computer code. It is found that the γ-parameter values generated by the latter code slightly deviate from experiment over the velocity region around the stopping cross section maximum where strong charge exchanges usually occur.  相似文献   

2.
Large-scale molecular dynamics simulations with two Ar688 cluster impacts on a 4H-SiC surface are performed to investigate the mechanism of lateral sputtering caused by two clusters collisions. The two Ar clusters are composed of 688 atoms each (referred as Ar688) which are described by a simple Lennard-Jones potential. The initial velocities of both clusters are 2.55 × 104 m/s when the acceleration voltage is 100 keV. The computational volume is 30 nm × 30 nm × 16 nm, which is constructed by 1444608 4H-SiC atoms. At 0.8 ps after the impact from the first Ar cluster on the 4H-SiC surface, a second argon cluster with predetermined incident-angle collides with 4H-SiC surface at a distance of one “diameter” away from the center of the first impact where the term “diameter” refers to the diameter of the footprint of the first impact on 4H-SiC. The incident-angle of the second argon cluster was set at 0°, 60°, or 80° for three different trials. Consequently, in each case the crater formed by the first cluster showed signs of being smeared out by the impact of the second cluster. Especially at the incident-angle of 80° the effects of surface modification were clearly noticeable.  相似文献   

3.
4.
A direct Monte Carlo program has been developed to calculate the backward (γb) and forward (γf) electron emission yields from 20 nm thick Al foil for impact of C+, Al+, Ar+, Cu+ and Kr+ ions having energies in the range of 0.1-10 keV/amu. The program incorporates the excitation of target electrons by projectile ions, recoiling target atoms and fast primary electrons. The program can be used to calculate the electron yields, distribution of electron excitation points in the target and other physical parameters of the emitted electrons. The calculated backward electron emission yield and the Meckbach factor R = γf/γb are compared with the available experimental data, and a good agreement is found. In addition, the effect of projectile energy and mass on the longitudinal and lateral distribution of the excitation points of the electrons emitted from front and back of Al target has been investigated.  相似文献   

5.
The thickness of a CR-39 detector is determined using an energy dispersive X-ray fluorescence (EDXRF) method of analysis. The method is based on exciting a suitable target and measuring the intensity of its fluorescence X-ray lines passing through the CR-39 sample in a fixed geometry. By properly selecting the target material, the method succeeds in assessing the thickness change of CR-39 detectors etched for different time intervals. The bulk etch rate (Vb) may thus be obtained, which is an important parameter for any solid state nuclear track detector. Application of the EDXRF method yielded a value of Vb = (2.01 ± 0.04) μm h−1 for etching in a 6 N NaOH solution at 75 °C. This value agrees with the bulk etch rate of (1.90 ± 0.03) μm h−1, obtained by the conventional mass-change method.  相似文献   

6.
The total secondary electron emission yields, γT, induced by impact of the fast ions Neq+ (q = 2-8) and Arq+ (q = 3-12) on Si and Neq+ (q = 2-8) on W targets have been measured. It was observed that for a given impact energy, γT increases with the charge of projectile ion. By plotting γT as a function of the total potential energy of the respective ion, true kinetic and potential electron yields have been obtained. Potential electron yield was proportional to the total potential energy of the projectile ion. However, decrease in potential electron yield with increasing kinetic energy of Neq+ impact on Si and W was observed. This decrease in potential electron yield with kinetic energy of the ion was more pronounced for the projectile ions having higher charge states. Moreover, kinetic electron yield to energy-loss ratio for various ion-target combinations was calculated and results were in good agreement with semi-empirical model for kinetic electron emission.  相似文献   

7.
Measurements have been performed of scintillation light intensities emitted from various inorganic scintillators irradiated with low-energy beams of highly-charged ions from an electron beam ion source (EBIS) and an electron cyclotron resonance ion source (ECRIS). Beams of xenon ions Xeq+ with various charge states between q = 2 and q = 18 have been used at energies between 5 and 17.5 keV per charge generated by the ECRIS. The intensity of the beam was typically varied between 1 and 100 nA. Beams of highly charged residual gas ions have been produced by the EBIS at 4.5 keV per charge and with low intensities down to 100 pA. The scintillator materials used are flat screens of P46 YAG and P43 phosphor. In all cases, scintillation light emitted from the screen surface was detected by a CCD camera. The scintillation light intensity has been found to depend linearly on the kinetic ion energy per time deposited into the scintillator, while up to q = 18 no significant contribution from the ions’ potential energy was found. We discuss the results on the background of a possible use as beam diagnostics, e.g. for the new HITRAP facility at GSI, Germany.  相似文献   

8.
Solid-state nuclear track detectors (SSNTDs), such as LR 115, have been commonly used in diffusion chambers for long-term measurements of radon gas concentrations. For the LR 115 SSNTD, it has been found that the active layer removed during chemical etching is significantly affected by the presence and amount of stirring, and thus cannot be controlled easily. However, the sensitivity of the LR 115 detector inside a diffusion chamber to the radon and/or thoron gas concentration is dependent on the actual removed active layer thickness. This relationship is dependant on the geometry of the diffusion chamber and the deposition fraction of 218Po in the diffusion chamber, as well as the V function for the LR 115 detector (V is the ratio between the track etch velocity Vt to the bulk etch velocity Vb). This paper presents the experimentally determined relationships between the sensitivity of the LR 115 detector inside a Karlsruhe diffusion chamber and the removed active layer thickness, for both radon and thoron. A V function was adjusted to simulate the relationships. In particular, for the case of 222Rn, we have found f ∼ 0.5, where f is the fraction of 218Po which decays inside the diffusion chamber before deposition onto available inner surfaces of the chamber. In conclusion, we have found that the sensitivities critically depend on the actual removed active layer thickness, so this should be monitored and used in determining the sensitivities.  相似文献   

9.
Metallic and non-metallic ion beams can be used to modify the properties of wafer surfaces if accelerated at moderate energies. We developed a new “implantation machine” able to generate ions and to accelerate them up to 80 kV. The ion generation is achieved by a laser-plasma source which creates plasma in expansion. The device consists of a KrF excimer laser and a generating vacuum chamber made of stainless steel. The laser energy was 45 mJ/pulse with a power density of 2.25 × 108 W/cm2. The target was kept to positive voltage to accelerate the produced ions. The ion dose was estimated by a fast polarised Faraday cup. This machine was utilised to try synthesizing silicon nanocrystals in SiO2 matrix. Preliminary results of Si nanocrystals formation and the glancing-angle X-ray diffraction analyses are reported.  相似文献   

10.
The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source and further precise 180Hf isotope implantation, in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. Hence, it is possible to implant 180Hf+, with less than 1% contamination from neighboring isotopes, in order to conduct material characterization studies by Perturbed Angular Correlations. The precision of the low fluence ion implantation has been done by neutron activation analysis.  相似文献   

11.
12.
Pure target ionization was investigated for 0.4-6.4 MeV Cq+(q = 1-4) + He and Oq+(q = 1-4) + He collisions. The double-to-single target ionization ratios R21 were measured using coincidence techniques. We compare our results with existing experimental results and find they are in good agreement. The ratio R21 is nearly independent of projectile charge state. The relation of R21 ∼ V is analyzed using the over barrier model (OBM) and ionization probability, which is described in our extended over barrier model. Our calculation agrees well with the experimental results.  相似文献   

13.
A thin germanium crystal has been irradiated at GANIL by Pb beams of 29 MeV/A (charge state Qin = 56 and 72) and of 5.6 MeV/A (Qin = 28). The induced ion emission from the sample entrance surface was studied, impact per impact, as a function of Qin, velocity vin and energy loss ΔE in the crystal. The Pb ions transmitted through the crystal were analyzed in charge (Qout) and energy using the SPEG spectrometer. The emitted ionized species were detected and analyzed in mass by a time-Of-flight multianode detector (LAG). Channeling was used to select peculiar ΔE values in Ge and hence peculiar Pb ion trajectories close to the emitting entrance surface. The experiment was performed in standard vacuum. No Ge emission was found. The dominating emitted species are H+ and hydrocarbon ions originating from the contamination layer on top of the crystal. The mean value 〈M〉 of the number of detected species per incoming Pb ion (multiplicity) varies as (Qin/vin)p, with p values in agreement with previous results. We have clearly observed an influence of the energy deposition ΔE in Ge on the emission from the top contamination layer. When selecting increasing values of ΔE, we observed a rather slow increase of 〈M〉. On the contrary, the probabilities of high multiplicity values, which are essentially connected to fragmentation after emission, strongly increase with ΔE.  相似文献   

14.
Differential cross-sections for proton elastic scattering on sodium and for γ-ray emission from the reactions 23Na(p,p′γ)23Na (Eγ = 440 keV and Eγ = 1636 keV) and 23Na(p,α′γ)20Ne (Eγ = 1634 keV) were measured for proton energies from 2.2 to 5.2 MeV using a 63 μg/cm2 NaBr target evaporated on a self-supporting thin C film.The γ-rays were detected by a 38% relative efficiency Ge detector placed at an angle of 135° with respect to the beam direction, while the backscattered protons were collected by a Si surface barrier detector placed at a scattering angle of 150°. Absolute differential cross-sections were obtained with an overall uncertainty estimated to be better than ±6.0% for elastic scattering and ±12% for γ-ray emission, at all the beam energies.To provide a convincing test of the overall validity of the measured elastic scattering cross-section, thick target benchmark experiments at several proton energies are presented.  相似文献   

15.
Commercial O-face (0 0 0 1) ZnO single crystals were implanted with 200 keV Ar ions. The ion fluences applied cover a wide range from 5 × 1011 to 7 × 1016 cm−2. The implantation and the subsequent damage analysis by Rutherford backscattering spectrometry (RBS) in channelling geometry were performed in a special target chamber at 15 K without changing the target temperature of the sample. To analyse the measured channelling spectra the computer code DICADA was used to calculate the relative concentration of displaced lattice atoms.Four stages of the damage evolution can be identified. At low ion fluences up to about 2 × 1013 cm−2 the defect concentration increases nearly linearly with rising fluence (stage I). There are strong indications that only point defects are produced, the absolute concentration of which is reasonably given by SRIM calculations using displacement energies of Ed(Zn) = 65 eV and Ed(O) = 50 eV. In a second stage the defect concentration remains almost constant at a value of about 0.02, which can be interpreted by a balance between production and recombination of point defects. For ion fluences around 5 × 1015 cm−2 a second significant increase of the defect concentration is observed (stage III). Within stage IV at fluences above 1016 cm−2 the defect concentration tends again to saturate at a level of about 0.5 which is well below amorphisation. Within stages III and IV the damage formation is strongly governed by the implanted ions and it is appropriate to conclude that the damage consists of a mixture of point defects and dislocation loops.  相似文献   

16.
It has long been known that the stopping and ranges of atoms and clusters depends on the projectile-target atom mass ratio. Recently, Carroll et al. [S.J. Carroll, P.D. Nellist, R.E. Palmer, S. Hobday, R. Smith, Phys. Rev. Lett. 84 (2000) 2654] proposed that the stopping of clusters also depends on the cohesive energy of the target. We investigate this dependence using a series of molecular-dynamics simulations, in which we systematically change the target cohesive energy, while keeping all other parameters fixed. We focus on the specific case of Au402 cluster impact on van-der-Waals bonded targets. As target, we employ Lennard-Jones materials based on the parameters of Ar, but for which we vary the cohesive energy artificially up to a factor of 20. We show that for small impact energies, E0 ? 100 eV/atom, the range D depends on the target cohesive energy U, D ∝ Uβ. The exponent β increases with decreasing projectile energy and assumes values up to β = 0.25 for E0 = 10 eV/atom. For higher impact energies, the cluster range becomes independent of the target cohesive energy. These results have their origin in the so-called ‘clearing-the way’ effect of the heavy Au402 cluster; this effect is strongly reduced for E0 ? 100 eV/atom when projectile fragmentation sets in, and the fragments are stopped independently of each other. These results are relevant for studies of cluster stopping and ranges in soft matter.  相似文献   

17.
A software has been developed in order to automatize the ion energy analyzer (IEA) spectra analysis of laser-generated plasmas.A Nd:Yag laser operating at an intensity of the order of 1010 W/cm2, 9 ns pulse width and energy of the order of 600 mJ, has been employed to irradiate different metallic targets (Al, Ti, W) and to produce plasma pulses. The ion emission from the plasma is monitored through an IEA instrument permitting time-of-flight (TOF) measurements to determine the ion energy distributions as a function of the charge state.The software program consists in two sections. The first one permits to identify the IEA ion peaks corresponding to different charge states as a function of the theoretical TOF values. The second section permits to plot the ion velocity and energy distributions as a function of the charge state. The obtained distributions are fitted using the “Coulomb-Boltzamnn shifted” function approach through the “Peakfit” code. The fit of the experimental data permits to estimate the equivalent plasma temperature and the average energy shift of the distributions as a function of the ion charge state.  相似文献   

18.
Noting the lack of and the increasing need for information concerning heavy ion stripping in the intermediate velocity regime, we have studied a large number of ion-target systems experimentally. We present experimental charge state distributions obtained at the GANIL accelerator for several projectiles (36 ≤Zp≤ 92) with energies ranging from 18 MeV/u to 44 MeV/u, emerging from various target foils (4 ≤Zt≤ 79) of natural isotopic composition. The target thicknesses (from 1 μg/cm2up to several mg/cm2) are chosen to cover the pre- and post-charge-state equilibrium regimes. Charge state fractions, mean charge state, charge distribution width, and emerging ion energy are tabulated for each of the 107 projectile–target element–target thickness combinations. We also present an improvement of the semi-empirical formulae proposed by Baron et al. to predict the mean charge states and the distribution widths at equilibrium. These formulae are compared with the available experimental data.  相似文献   

19.
Extensive calculations of single, multiple and total electron-loss cross-sections of fast heavy ions in collisions with neutral atoms are performed in the semi-classical approximation using the DEPOSIT code based on the energy deposition model and statistical distributions for ionization probabilities. The results are presented for Ar1+, Ar2+, Kr7+, Xe3+, Xe18+, Pb25+ and Uq+ (q = 10, 28, 39, 62) ions colliding with H, N, Ne, Ar, Kr, Xe and U atoms at energies E > 1 MeV/u and compared with available experimental data and the n-particle classical-trajectory Monte Carlo (nCTMC) calculations. The results show that the present semi-classical model can be applied for estimation of multiple and total electron-loss cross-sections within accuracies of a factor of 2.From calculated data for the total electron-loss cross-sections σtot, their dependencies on relative velocity v, the first ionization potential I1 of the projectile and the target atomic number ZA are found and a semi-empirical formula for σtot is suggested. The velocity range, where the semi-classical approximation can be used, is discussed.  相似文献   

20.
Annihilation characteristics of positrons and positronium (Ps) in thin metal and polymer films were studied. Monoenergetic positrons were implanted into free-standing thin W and Au films and the annihilation γ-rays of positron-electron pairs were measured as a function of the incident energy of positrons. At the front-side surfaces of the films, an emission of Ps into vacuum and a resultant self-annihilation of ortho-Ps (o-Ps) were observed. At the backside surfaces, the Ps emission was found to be enhanced by an increase in the numbers of epithermal positrons and/or secondary electrons introduced by the impact of energetic positrons. For thin polymer films (polyester and polystyrene), the emission rate of o-Ps from the backside surfaces was higher than that from the metal films, which was attributed to the out-diffusion of o-Ps formed in the films. Those results suggested that the emission rate of Ps into vacuum was sensitive to the Ps formation process in the bulk and at the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号