首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low energy ion scattering (LEIS) is used to characterize Ga layers deposited onto Si(1 1 1)-(7 × 7) substrates at different deposition temperatures. The Ga/Si system exhibits a pronounced 3D island growth and thus is a suitable object to investigate the relation between LEIS-peak shapes and the morphology of thin films. It is shown that up to a certain critical depth (a few MLs) the single scattering component can be used as a measure of the number of surface Ga atoms per unit area. If a higher amount of Ga is deposited, the single scattering model is not valid anymore and multiple scattering becomes significant. The Ga peak starts to be asymmetric with a well developed multiple scattering component. Such a component can be utilized for the observation of the morphology of the layers. It was found that the more intensive the 3D growth of adsorbed Ga atoms on the Si(1 1 1) substrate, the more pronounced is the multiple scattering yield for a given amount of Ga.  相似文献   

2.
The electron Rutherford backscattering spectra and high-energy reflection electron energy loss spectra have been calculated by a Monte Carlo method for bulk solids and overlayer/substrate systems. The simulation model is mainly based on the use of Mott cross section for elastic scattering and the use of Penn’s dielectric functional approach to the electron inelastic scattering inside the solid. Moreover, it has further considered the recoil energy loss of energetic electrons and the thermal vibration of atoms with an isotropic distribution of the velocity direction. The calculated energy loss spectra for Al/Pt and Al/Mo agree with the experimental spectra quite well. The signals owing to different kinds of atoms can be separated by taking the scatter for the maximum-scattering angle event along an electron trajectory as the Rutherford backscattering atom, enabling a theoretical estimation of the peak intensity ratio. Furthermore, the simulation has also indicated that the multiple scattering is the dominant process to the quasi-elastic and energy loss of the electrons and is responsible mainly to the difference on the peak intensity between the linear model and experiment.  相似文献   

3.
The clean Cu(1 0 0) surface and Pt/Cu(1 0 0) surface by Pt deposition at room temperature have been investigated using the computer simulation of coaxial impact-collision ion scattering spectroscopy (CAICISS). The computer simulations employing the ACOCT program code, which treats the atomic collisions three-dimensionally and is based on the binary collision approximation (BCA), were carried out for the case of 3 keV He+ ions incident along the 〈1 0 0〉 and 〈1 1 0〉 azimuths of the clean Cu(1 0 0) and Pt/Cu(1 0 0) surfaces. The comparisons between ACOCT results and experimental CAICISS data show that the experimental results on the clean Cu(1 0 0) surface are relatively well reproduced by the ACOCT simulations including the inward relaxation of 1.2% in the first interlayer spacing and the outward relaxation of 1.6% in the second interlayer spacing, and that the ACOCT simulations for the Pt deposition with coverages of 2.35 ML and 2.75 ML on the Cu(1 0 0) surface appear the concentrations of 0.24 ML of Pt sitting 2.3 Å and 0.25 ML of Pt sitting 2.5 Å above the outermost atomic layer, respectively.  相似文献   

4.
Low-energy heavy-ion Elastic Recoil Detection Analysis (ERDA) is becoming a mature technique for high-resolution characterization of thin films, i.e. below 50 nm thickness. In combination with a small tandem accelerator (∼2 MV terminal voltage) and beam energies below 20 MeV, it is suitable for routine analysis of key materials in semiconductor technology.At low-energies, however, small angle multiple scattering and large angle plural scattering of ions play a significant role, starting from the first nanometers. Multiple and plural scattering dominate the depth resolution deterioration with increasing depth and, when glancing angles are used, introduce long tails in the elemental energy profiles. Moreover, multiple and plural scattering may affect the elemental relative and absolute quantification. A complete characterization of ultra-thin films thus requires a detailed analysis with accurate simulation of the energy spectra.In this paper we investigate the mechanism of multiple and plural scattering for different combinations of beam/recoil atoms, energies and geometries. Simulations run with the Monte Carlo code MCERD support and generalize the experimental data. The calculations show the relative contributions of beam and recoil ions and highlight the role of ion angular distribution to the formation of tails in the energy profiles.  相似文献   

5.
High-resolution Rutherford backscattering spectroscopy (HRBS)/channeling techniques have been utilized for a detailed characterization of ultra-thin indium tin oxide (ITO) films and to probe the nature of the interface between the ITO film and the Si(0 0 1) substrate. Channeling studies provide a direct measure of the lattice strain distribution in the crystalline Si substrate in the case of amorphous over layers. The measurements on DC magnetron sputtered ITO films have been carried out using the recently installed HRBS facility at the Centre for Ion Beam Applications (CIBA). The thickness of the ultra-thin (∼9.8 nm) ITO films was calculated from the HRBS spectra having an energy resolution of about 1.4 keV at the superimposed leading (In + Sn) edge of the ITO film. The films were near stoichiometric and the interface between ITO film and Si was found to include a thin SiOx transition layer. The backscattering yields from (In + Sn) of ITO were equal in random and channeling directions, thereby revealing the non-crystalline nature of the film. Angular scans of HRBS spectra around the off-normal [1 1 1] axis clearly showed a shift in the channeling minimum indicative of compressive strain of the Si lattice at the SiOx/Si interface. The observed strain was about 0.8% near the interface and decreased to values below our detection limits at a depth of ∼3 nm from the SiOx/Si interface.  相似文献   

6.
The interface of thin Lu2O3 on silicon has been studied using high-resolution RBS (HRBS) for samples annealed at different temperatures. Thin rare earth metal oxides are of interest as candidates for next generation transistor gate dielectrics, due to their high-k values allowing for equivalent oxide thickness (EOT) of less than 1 nm. Among them, Lu2O3 has been found to have the highest lattice energy and largest band gap, making it a good candidate for an alternative high-k gate dielectric. HRBS depth profiling results have shown the existence of a thin (∼2 nm) transitional silicate layer beneath the Lu2O3 films. The thicknesses of the Lu2O3 films were found to be ∼8 nm and the films were determined to be non-crystalline. Angular scans were performed across the [1 1 0] and [1 1 1] axis along planar channels, and clear shifts in the channeling minimum indicate the presence of Si lattice strain at the silicate/Si interface.  相似文献   

7.
The microstructure of thermally grown oxides (TGO) and the creep properties of alloy 617 were investigated. Oxidation and creep tests were performed on 100 μm thick foils at 800-1000 °C in air environment, while the thickness of TGO was monitored in situ. According to energy dispersive X-ray (EDX) mapping micrographs observation, superficial dense oxides, chromia (Cr2O3), which was thermodynamically unstable at 1000 °C, and discrete internal oxides, alumina (α-Al2O3), were found. Consequently, the weight of the foil specimen decreased due to the spalling and volatilization of the Cr2O3 oxide layer after an initial weight-gaining. Secondary and tertiary creeps were observed at 800 °C, while the primary, secondary and tertiary creeps were observed at 1000 °C. Dynamic recrystallization occurred at 800 °C and 900 °C, while partial dynamic recrystallization at 1000 °C. The apparent activation energy, Qapp, for the creep deformation was 271 kJ/mol, which was independent of the applied stress.  相似文献   

8.
We report on the secondary electron yields of Au and oxidized aluminum (Al2O3) by impact of heavy ions with energies ranging from 7.92 MeV/amu (12C6) to 2.54 MeV/amu (107Ag47). The obtained results, the first in this energy range using medium-heavy ions, extend the validity of proposed scaling laws obtained with lighter ions. Measurements have been performed using the SIRAD irradiation facility at the 15 MV Tandem of the INFN Laboratory of Legnaro (Italy), to evaluate the performance of ion electron emission microscopy at SIRAD.  相似文献   

9.
We observed an increase in the conductivity of a thiospinel compound, CuIr2S4, induced by H+ and He+ irradiation with energies of 1-2 MeV. It was indicated that the metastable conductive phase was produced by electronic excitation due to the ion beam and this phase was similar to the X-ray-induced phase. Conductivity as a function of ion fluence was analyzed by a simple model where the ion-induced change occurred in a cylindrical region around an ion trajectory. The cross-sectional area of the cylinder was obtained by analyzing the conductivity as a function of ion fluence for each ion, and it was found that an impinging ion produced a nanowire in the conductive phase. In addition, the yield of the Ir dimer displacement, which was related to the increase in conductivity, was considerably high. The ion irradiation effect reported in this paper is unique with regard to the high yield and low linear energy transfer (LET) in the formation of the conductive-phase nanowire. Both these unique aspects could be ascribed to the low band-gap energy and strong electron-lattice interaction of this compound.  相似文献   

10.
The excitation function was measured for the 68Zn(p, 2p)67Cu nuclear reaction from its threshold energy up to 40 MeV. Nine pieces of highly enriched 68Zn (>98%) metal foils were irradiated to obtain reliable cross-sections using the usual stacked-foil technique. All foils were subjected to high efficiency radiochemical separation before the activity measurements. A critical compilation of the available experimental cross-section results was also performed. Thick target yields of 67Cu and the longer-lived copper radio-contaminants (61Cu and 64Cu) were calculated using the reliable literature results up to 100 MeV. Additionally, EOB (End Of Bombardment) contamination levels as a function of bombarding energy and irradiation time were deduced.  相似文献   

11.
The presence of micro-cracks at the surface of a ferritic-martensitic steel is known to favour its embrittlement by liquid metals and thus decrease the mechanical properties of the structural materials. Unfortunately, conventional fracture mechanics methods cannot be applied to tests in liquid metal environment due to the opaque and conducting nature of the LBE. Therefore new methods based on the normalization technique for assessment of plain strain fracture toughness in LBE were examined. This paper discusses the assessment of the plain strain fracture toughness of T91 steel in liquid lead bismuth environment at 473 K, tested at a displacement rate of 0.25 mm min−1 and makes the comparison with results obtained in air at the same temperature and displacement rate. Although there is a decrease of the fracture toughness by 20-30% when tested in LBE, the toughness of the T91 steel remains sufficient under the tested conditions.  相似文献   

12.
Reflection and sticking of hydrogen atoms at amorphous carbon surfaces is studied at impact energies ranging from 0.1 to 50 eV using molecular dynamics simulations. We show that the reflection coefficient at the lowest energies is large and is very sensitive to both the many-body potential used in the simulations and the degree of hydrogen enrichment of the surfaces.  相似文献   

13.
A 160 nm Al0.08In0.018Ga0.902N layer was grown by metal-organic chemical vapour deposition (MOCVD) on sapphire (0 0 0 1) with thick (>1 μm) GaN intermediate layer. The chemical compositions can be determined by Rutherford backscattering (RBS). The perpendicular and parallel strain of Al0.08In0.018Ga0.902N layer was derived to be zero by using a combination of high resolution X-ray diffraction (HRXRD) and RBS/channeling. The conclusion is further evidenced by transmission electron microscopy (TEM).  相似文献   

14.
Under exposure to ionizing radiation the molecular weights of polymeric matter changes via formation of crosslinks and scissions of chains. As a result the molecular weight (Mw) distribution of a polymer depends on the applied ion fluence and differs from the initial one, which in our case is of the Schulz-Zimm type. Statistical theories can be used to estimate the Mw distribution.We study Mw distributions in proton irradiated polystyrene (PS) thin films by diffusion measurements. As chains of different degrees of polymerization diffuse unequally fast diffusion depth profiles contain information about the involved Mw distribution. Both irradiation and analysis with nuclear reaction analysis (NRA) were made at the Freiburg van de Graaff accelerator.As comparison gel permeation chromatography (GPC) measurements were conducted. However, the use of GPC is limited by the minimal amount of material needed and also does not work for very short chains in our case.Here we concentrate on the Mw distributions, the measurements and the fitting procedure will be presented elsewhere.  相似文献   

15.
The high-chromium ferritic/martensitic steel T91 and the austenitic stainless steel 316L are to be used in contact with liquid lead-bismuth eutectic (LBE), under high irradiation doses. Both tungsten inert gas (TIG) and electron beam (EB) T91/316L welds have been examined by means of metallography, scanning electron microscopy (SEM-EDX), Vickers hardness measurements and tensile testing both in inert gas and in LBE. Although the T91/316L TIG weld has very good mechanical properties when tested in air, its properties decline sharply when tested in LBE. This degradation in mechanical properties is attributed to the liquid metal embrittlement of the 309 buttering used in TIG welding of T91/316L welds. In contrast to mixed T91/316L TIG welding, the mixed T91/316L EB weld was performed without buttering. The mechanical behaviour of the T91/316L EB weld was very good in air after post weld heat treatment but deteriorated when tested in LBE.  相似文献   

16.
It is shown that the band structure of the energy levels of planar channeled electrons qualitatively changes the angular distributions of X-rays emitted at Bragg angles.  相似文献   

17.
Layered Al2O3/HfO2 structures were deposited on Si by atomic layer deposition and the atomic transport during rapid thermal annealing was investigated by low energy ion scattering, medium energy ion scattering and narrow nuclear resonant reaction profiling. The structures were dissociated during annealing by different mechanisms, such as interdiffusion of the layers and metal loss from the dielectric. The possible detrimental effects on device electrical properties of the observed decomposition are discussed.  相似文献   

18.
Multiply charged ion beam transmission through insulating capillaries is today a very active field of research. Thanks to the work of several groups during the last five years, several features of this unexpected process have been evidenced. The open challenge is to understand and control the self-organized charging-up of the capillary walls, which leads finally to the ion transmission. Up to now, the specific charge distribution on the inner surface, as well as the dynamics of the build-up, are still to be understood. While capillaries usually studied are microscopic pore networks etched in different materials, our concern is in macroscopic single capillaries made of glass. With a length of several centimeters and a diameter of a few micrometers at the exit, these capillaries have nevertheless the same aspect ratio as the etched pores (length/diameter ≈ 100). One of the leading goals of this research on single capillaries is to produce multi-charged ion beams with diameters smaller than a micrometer (nano-beams). These glass capillaries offer the opportunity to be used as an ion funnel due to their amazing properties of guiding and focusing highly charged ion beams without altering neither their initial charge state nor the beam emittance (<10−3 π mm mrad). However, the understanding of the underlying process is not complete and relies on models assuming charge patches distributed along the capillary and which still need to be tested. We present the first observation imaging the dynamics of the charging-up process in single glass capillaries. During the build-up of the self-organized charge deposition on the capillary walls, the 230 keV Xe23+ transmitted beam is deflected back and forth several times as the outgoing current increases. This is in agreement with the picture of charge patches created sequentially along the capillary and thus deflecting the beam until a stationary state is reached.  相似文献   

19.
The energy and intensity distributions of multiple backscattering of 1.12 MeV gamma photons emerging from targets of elements and alloys are observed as a function of thickness and atomic number (Z) of the target. The numbers of these multiply backscattered events show an increase with increase in target thickness, and then saturate for a particular thickness of the target called saturation thickness (depth). The saturation thickness decreases with increasing atomic number and varies as eZ. The multiple backscattering, an interfering background noise in Compton profile, has been successfully used to assign the ‘‘effective atomic number’’ to alloys. Monte Carlo calculations also support the present experimental results. The number, energy and dose albedos are also found to be saturating for the same thickness where the numbers of multiply backscattered events saturate.  相似文献   

20.
We have studied electronic and atomic structure modifications of Cu3N films under 100 keV Ne and 100 MeV Xe ion impact. Cu3N films were prepared on R(11-2 surface)-cut-Al2O3 substrates at 250 °C by using a RF-magnetron sputter deposition method. X-ray diffraction (XRD) shows that unirradiated films are polycrystalline with (1 0 0) orientation of cubic structure. We find that the electrical resistivity (∼10 Ω cm before ion impact) decreases by more than two orders of magnitude after the Ne impact at a fluence of ∼1013 cm−2, where no Cu phase separation is observed. For further ion impact (larger than ∼1015 cm−2), XRD shows Cu diffraction peak (Cu phase separation), and the resistivity decreases further (three orders of magnitude). Decomposition and phase separation are discussed based on these results, as well as temperature dependence of the resistivity and optical absorption. The results of 100 MeV Xe ion impact are compared with those of Ne ion impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号