首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium dioxide (TiO2) rutile single crystal was irradiated by infrared femtosecond (fs) laser pulses with repetition rate of 250 kHz and phase transformation of rutile TiO2 was observed. Micro-Raman spectra show that the intensity of Eg Raman vibrating mode of rutile phase increases and that of A1g Raman vibrating mode decreases apparently within the ablation crater after fs laser irradiation. With increasing of irradiation time at laser average power of 300 mW, the Raman vibrating modes of anatase phase emerged. Rutile phase of TiO2 single crystal is partly transformed into anatase phase. The anatase phase content transformed from rutile phase increased to a maximum and then decreased with increasing of fs pulse laser irradiation time. The line mapping of micro-Raman spectrum at the crater, irradiated by fs pulse laser for 100 s at average power of 300 mW, indicates more rutile phase are transformed into anatase phase at the center.  相似文献   

2.
Lasers are used to modify polymeric materials. In this work, a number of polycarbonate (PC) pieces were exposed by ArF excimer laser, 193 nm, at various UV doses from 10 to 100 J/cm2 with 50-500 mJ/pulse at 10 Hz pulse repetition rate. Morphology of PC has been investigated by scanning electron microscope (SEM) at three regimes pre-ablation, slow and fast ablation. SEM identifies that the conical defects are created on the polymer surface to grow opposite to the direction of laser irradiation. It increases the superficial absorptivity of the material dependent on the ArF laser induced conical microstructure geometry. The contact angle measurement was performed here, in order to determine the hydrophilicity of the irradiated polymer at various coherent doses. It is shown that the contact angle of PC samples which are exposed to the ArF laser significantly alters with UV dose below 7 J/cm2.  相似文献   

3.
Investigations of the velocity and the angular distributions of particles (Cd, Te, Te2) emitted into vacuum during the ablation of CdTe with pulsed Nd:YAG laser are presented. The laser pulse duration was 100 μs and the energy ranged from 0.16 to 0.28 J. Three kinds of targets were used in the experiments: target made of bulk crystal, target made of CdTe pressed powder, and target made of loose powder. Quadrupole mass spectrometer time-of-flight (TOF) measurements of the particle velocities revealed that their distributions are substantially narrowed. These effects are ascribed to strong collisional effects in the gas phase. The particle velocity distributions are well described by the shifted Maxwell-Boltzmann distribution. From fitting this distribution to the TOF experimental data we found that the centre-of-mass-velocity, u, is in the range of (220-600) m/s and the most probable velocity in the centre-of-mass system, v0 is in the range (140-240) m/s. The average velocity in the laboratory system depends both on the laser pulse energy and on the target preparation method. At lower pulse energies, the values of u decrease with the particle mass, but with an increase in energy, the values of u level. This levelling can be explained by a model of entrainment of heavy particles (Te2) by the stream of lighter particles (Cd, Te). The model is assumed to be applicable for a gas phase with a large number of particle collisions. The found angular dependence of the particle velocities is smaller than expected. It is apparently associated with the roughness of the target surface arising in the ablation process.  相似文献   

4.
A study of laser ablation of different metals (aluminium, zinc, tantalum and lead), in vacuum, by using 3 ns Nd:YAG laser radiation, at 532 nm wavelength, is reported. Laser pulse, at intensities of the order of 109 W/cm2, produces high non-isotropic emission of neutrals and ionic species. Mass quadrupole spectrometry, associated to electrostatic ion deflection, allows estimation of the energy distributions of the emitted species within the plume as a function of the incident laser energy. Neutrals show typical Boltzmann distributions while ions show Coulomb-Boltzmann-shifted distributions. The plasma characterization is rationalized in terms of kinetic energies of ejected particles, ion, electron and neutral temperatures, ion charge states, and plasma density. A special regard is given to the parameters which regulate the plasma temperature: the boiling point, the electron density and the ionization potentials of the ablated elements. The ion acceleration processes occurring inside the plasma due to the high electrical field generated in the non-equilibrium plasma conditions are presented and discussed.  相似文献   

5.
The MAST (mega-amp spherical tokamak) Thomson scattering (TS) diagnostics have been radically upgraded and expanded. Eight 30 Hz 1.6 J Nd:YAG lasers have been combined to produce a sampling rate of 240 Hz. The scattered signals are acquired by two spectrometer systems: core and edge. The core system has been built anew: collection optics, polychromators, digitizers, and control computers. It allows measurement of electron temperature and density at 130 spatial points with ∼10 mm resolution across the plasma.The Nd:YAG scattered light signals are registered in 650 channels as polychromator outputs; each channel is registered on two ADCs: at 1 GHz rate in a short interval around each laser pulse and at 100 kHz for background data. The fast ADCs are combined in 26 data acquisition units. Each unit is assembled in a 6 U PXI chassis with embedded controller and six 4-channel 1 GHz ADC cards. Some chassis contain a 96-channel slow ADC card with Ethernet control.The Ruby TS has been rebuilt with a new spectrometer and CCD camera to provide higher spatial resolution - 512 points; the laser has been modified to add double pulse capability.A new control and acquisition system has been developed; it has modular design allowing flexibility and seamless expansion. The system supports event-triggered and real-time operation (will be added in a later stage).A smart trigger device has been developed for TS timing and synchronisation. It provides complex pulse sequences for laser firing with resynchronisation on a number of digital and analogue inputs including plasma events. This device also triggers TS acquisition.The system is integrated by a TS master process running on the dedicated computer; it is represented as a standard MAST data acquisition unit. The Ruby TS is also implemented as a standard MAST unit linked with the Nd:YAG TS by MAST system services.  相似文献   

6.
Ordered luminescent nanoclusters array in the form of grating structures are fabricated on silicon (1 0 0) surface by Q-switched Nd:YAG laser beam irradiation of second harmonic wavelength (532 nm) in vacuum. Blue-green photoluminescence (PL) spectrum from the ordered nanoclusters array exhibits two asymmetrical peaks at 2.58 eV and 2.88 eV in the blue-green region corresponding to the bimodal distribution of nano size clusters. The size of the nanoclusters is estimated from the three dimensional quantum-confined model incorporating Gaussian size distribution. When subjected to rapid thermal annealing at 710 °C for 10 min in N2 atmosphere there is an enhancement of the PL intensity without any change in the peak emission energy and broadening suggesting that the origin of PL is related to quantum confinement effect in Si nanocrystallite. The surface morphology of the irradiated surface varies considerable with the number of laser shots, laser fluence and ambient conditions.  相似文献   

7.
Metallic and non-metallic ion beams can be used to modify the properties of wafer surfaces if accelerated at moderate energies. We developed a new “implantation machine” able to generate ions and to accelerate them up to 80 kV. The ion generation is achieved by a laser-plasma source which creates plasma in expansion. The device consists of a KrF excimer laser and a generating vacuum chamber made of stainless steel. The laser energy was 45 mJ/pulse with a power density of 2.25 × 108 W/cm2. The target was kept to positive voltage to accelerate the produced ions. The ion dose was estimated by a fast polarised Faraday cup. This machine was utilised to try synthesizing silicon nanocrystals in SiO2 matrix. Preliminary results of Si nanocrystals formation and the glancing-angle X-ray diffraction analyses are reported.  相似文献   

8.
We have produced a pulsed beam of low energy (ultra slow) polarized positive muons (LE-μ+) and performed several demonstration muon spin rotation/relaxation (μSR) experiments at ISIS RIKEN-RAL muon facility in UK. The energy of the muons implanted into a sample is tuneable between 0.1 keV and 18 keV. This allows us to use muons as local magnetic microprobes on a nanometre scale. The control over the implantation depth is from several nanometres to hundreds of nanometres depending on the sample density and muon energy. The LE-μ+ are produced by two-photon resonant laser ionization of thermal muonium atoms. Currently ∼15 LE-μ+/s with 50% spin polarization are transported to the μSR sample position, where they are focused to a small spot with a diameter of only 4 mm. The overall LE-μ+ generation efficiency of 3 × 10−5 is comparable to that obtained when moderating the muon beam to epithermal energies in simple van der Waals bound solids. In contrast to other methods of LE-μ+ generation, the implantation of the muons into the sample can be externally triggered with the duration of the LE-μ+ pulse being only 7.5 ns. This allows us to measure spin rotation frequencies of up to 40 MHz.  相似文献   

9.
This paper reports on a Monte Carlo simulation analysis of the ionization and excitation clusters in electron tracks, which may contribute to radiation damage of biological cells with high probabilities. The study is aimed at investigating the energy transfer to the cell nucleus exposed to X-rays from low doses in the environment to high doses in radiation therapy. As an example, we adopt a water phantom exposed to X-rays from a 6 MV linac to calculate the expected energy transfer to electrons in liquid water. A track simulation of the electrons produced by the photon interactions was performed. The behavior of low energy electrons below 1 keV is of particular importance in forming clusters of ionization and excitation events within a nanometer scale (<100 nm). We describe the clustering pattern in terms of aggregation index, the distribution of point-to-point distance below several nanometers between the events. By comparing the distribution with that of the Poisson configuration, the clustering effects of the events including successive radical processes are evaluated.  相似文献   

10.
We have been developing a high-performance laser ion source (LIS) for practical applications since 2009. Ideally, the LIS should generate a carbon beam with a peak current of 20 mA and a pulse duration of over 1 μs. We selected a Nd:YAG laser with a Gaussian-coupled resonator as the laser source based on our experience of generating high-charge-state ion beams. This laser can produce fundamental pulses with a power of 650 mJ and durations of about 6 ns. The graphite target used is 10 cm high and 10 cm in diameter, as it can be irradiated with up to 105 laser shots. The maximum extraction voltage was designed to be 50 kV. We have already finished designing the LIS and we commenced fabrication. We intend to measure the source performance by performing plasma and beam tests up to the end of March 2011.  相似文献   

11.
The addition of Th to U-based fuels increases resistance to corrosion due to differences in redox-chemistry and electronic properties between UO2 and ThO2. Quantum-mechanical techniques were used to calculate surface energy trends for ThO2, resulting in (1 1 1) < (1 1 0) < (1 0 0). Adsorption energy trends were calculated for water and oxygen on the stable (1 1 1) surface of UO2 and ThO2, and the effect of model set-up on these trends was evaluated. Molecular water is more stable than dissociated water on both binary oxides. Oxidation rates for atomic oxygen interacting with defect-free UO2(1 1 1) were calculated to be extremely slow if no water is present, but nearly instantaneous if water is present. The semi-conducting nature of UO2 is found to enhance the adsorption of oxygen in the presence of water through changes in near-surface electronic structure; the same effect is not observed on the insulating surface of ThO2.  相似文献   

12.
The Compton profiles of Rh along [1 0 0] and [1 1 0] directions are measured using 100 mCi 241Am Compton spectrometer. To compare the experimental data, we have computed the Compton profiles and energy bands using spin-polarised relativistic Korringa-Kohn-Rostoker (SPR-KKR) and density functional theory schemes. The experimental and theoretical data are also compared with the available augmented plane wave and linear combination of Gaussian orbitals calculations. The origin of anisotropy in the momentum densities is discussed in terms of the energy bands and the Fermi surface topology. Among the various model calculations, it is seen that the KKR calculations are in better agreement with the absolute profiles but they significantly overestimate the anisotropy in momentum densities.  相似文献   

13.
Radiation events in δ-Pu (fcc) have been simulated in an attempt to understand the fundamental mechanisms that contribute to the Pu ageing process. The Pu interactions are modelled using a potential based on the modified embedded atom method (MEAM). The energetics of point defects have been investigated using static calculations together with molecular dynamics (MD) to simulate radiation events. All MD simulations were carried out with Pu initially in the face-centred-cubic (fcc) structure, although this is not the lowest energy configuration for the pure metal.The point defect study suggests that the mono-vacancy has the lowest formation energy (0.46 eV), with interstitial defects favouring the - split orientation over occupation of the native fcc octahedral site. Displacement threshold energy calculations at room temperature give a minimum value of between 5 and 6 eV, increasing to 8-14 eV along the major crystallographic directions.Low energy collision cascades, initiated with energies in the range of 0.4-1 keV, show that the cascades form in a similar manner to other fcc metals with a vacancy rich zone at the cascade core, surrounded by isolated interstitial defects. Higher energy cascades show similar features but with occasional channelling of energetic atoms and sub-cascade branching which significantly reduces defect production. A common trait observed across all the cascades was the relatively slow annealing period, compared to cascades in other fcc metals, with simulations at energies above 5 keV requiring many 10’s of picoseconds before the ballistic phase was completed.  相似文献   

14.
Using a three-dimensional molecular dynamics (MD) simulation, we investigated the atomic scale rearrangement that occurs on a Pd(0 0 1) surface after energetic bombardment by Ar at room temperature. High energy Ar bombardment provoked the significant rearrangement of Pd atoms in a ballistic manner with a fourfold symmetric lateral distribution aligned along the 〈1 1 0〉 direction. The MD simulation of uniform Ar bombardment at normal incidence on a Pd surface reproduced the experimentally observed fourfold symmetric nano-scale surface structure. The present result supports that the ballistic rearrangement of the substrate atoms plays an important role in the ion induced surface structure evolution.  相似文献   

15.
We report the synthesis of titanium nitride coating on a titanium substrate by utilizing energetic nitrogen ions emitted from a 2.3 kJ dense plasma focus device for 30 focus shots. The number of nitrogen ions transferred to the sample by a single ion pulse of about 140 ns duration in the energy interval (40-600 keV) is about 1.09 × 1012 with a mean energy per ion of 58 keV. The corresponding energy flux delivered to the titanium surface is estimated to be 6.17 × 1014 keV cm−3 ns−1 leading to a transient temperature rise of the top layer of about 5400 K which helps layer growth. The coating is investigated on the basis of its morphological, compositional and hardness properties. X-ray diffraction analysis of the sample reveals the formation of a nanocrystalline titanium nitride coating having (1 1 1) and (2 0 0) plane reflections with an average crystallite size of 40 nm. The compressive residual stresses in the nitride coating have been evaluated to be 2.80 GPa and 6.81 GPa corresponding to (1 1 1) and (2 0 0) plane orientations. A complete restructuring of the manually polished titanium substrate has been observed with appearance of nano-sized multidimensional granular surface morphologies. The thickness of the nitride coating is about 1 μm, whereas the coating has a nitrogen content of 35.35 at.% and 13.78 ± 3.57 wt.% and a surface hardness of 8.19 GPa.  相似文献   

16.
Shot-to-shot variation in the characteristics of laser produced plasma plume and surface profile of N-type silicon (1 1 1) are investigated. In order to produce plasma, a Q-switched Nd: YAG laser (1064 nm, 10 mJ, 9-14 ns) is tightly focused on silicon target in air at room temperature. Target was exposed in such a way that number of laser shots was increased from point to point in ascending order starting from single shot at first point. Target was moved 2 mm after each exposure. In order to investigate shot-to-shot variation in the time integrated emission intensity regions within the plasma plume, a computer controlled CCD based image capture system was employed. Various intensity regimes were found depending strongly on the number of incident laser pulses. Plasma plume length was also found to vary with the number of pulses. The topographic analysis of the irradiated Si was performed by Scanning Electron Microscope (SEM) which shows the primary mechanisms like thermal or non-thermal ablation depend on the number of shots. Surface morphological changes were also studied in terms of ripple formation, ejection, debris and re-deposition of material caused by laser beam at sample surface. The micrographs show ripples spacing versus wavelength dependence rule [Λ ≈ λ/(1 − sin θ)]. Intensity variations with number of shots are correlated with the surface morphology of the irradiated sample.  相似文献   

17.
The rate constants for the reactions of κ-carrageenan with hydrated electron and hydroxyl radical was investigated by pulse radiolysis and laser photolysis. The kinetics of the reaction of hydrated electron indicates no seeming reaction with κ-carrageenan. On the other hand, hydroxyl radical reacts very rapidly with κ-carrageenan at a rate constant of approximately 1.2 × 109 M−1 s−1. This rate constant varies with pH.  相似文献   

18.
This paper reports on Monte Carlo simulations of electrons in liquid water using a set of electron collision cross-sections constructed with data published recently. The track history of electrons having initial energy ranged from 1 keV to 10 keV is investigated looking at the ionization and excitation processes. The results show that the ratio of the ionization and excitation events per track history is unique independent of the initial electron energy above a couple of 100 eV and these inelastic processes occur with low energy electrons frequently below 100 eV. In particular, the excitation processes are dominated by the electrons below 50 eV. Flight distance distributions between the inelastic collisions are also discussed.  相似文献   

19.
Implantation of Cr-ions in Fe70Co30 thin film have been performed to modify its structural and magnetic properties. From the XRD results, the lattice constant as well as the grain size of the film is increasing with the ion fluence. Cr-ions (1 × 1017 ions/cm2) reduces the coercivity of the film from 140(3) Oe to 44(3) Oe. Coercivity of the film follows the exponential decay as a function of Cr-ions fluence. 35 keV (projectile range 13.5 nm) and 100 keV Cr-ions (projectile range 34.3 nm) have been used to understand the effects of magnetic Cr-ions and the effects of ballistic collision cascade on the MOKE signal. Similar changes on the coercivity behaviour of the film implanted with these two energies have been observed. It appears that the implantation process creates a solid solution of Cr in FeCo without any other additional treatment in the film. After 5 × 1016 Cr-ions, film exhibit four fold magnetic anisotropy.  相似文献   

20.
A software has been developed in order to automatize the ion energy analyzer (IEA) spectra analysis of laser-generated plasmas.A Nd:Yag laser operating at an intensity of the order of 1010 W/cm2, 9 ns pulse width and energy of the order of 600 mJ, has been employed to irradiate different metallic targets (Al, Ti, W) and to produce plasma pulses. The ion emission from the plasma is monitored through an IEA instrument permitting time-of-flight (TOF) measurements to determine the ion energy distributions as a function of the charge state.The software program consists in two sections. The first one permits to identify the IEA ion peaks corresponding to different charge states as a function of the theoretical TOF values. The second section permits to plot the ion velocity and energy distributions as a function of the charge state. The obtained distributions are fitted using the “Coulomb-Boltzamnn shifted” function approach through the “Peakfit” code. The fit of the experimental data permits to estimate the equivalent plasma temperature and the average energy shift of the distributions as a function of the ion charge state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号