首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the effects of swift heavy ion irradiation on cerium dioxide (CeO2), CeO2 sintered pellets were irradiated with 200 MeV Xe ions at room temperature. For irradiated and unirradiated samples, the spectra of X-ray photoelectron spectroscopy (XPS) were measured. XPS spectra for the irradiated samples show that the valence state of Ce atoms partly changes from +4 to +3. The amount of Ce3+ state was quantitatively obtained as a function of ion-fluence. The relative amount of oxygen atom displacements, which are accompanied by the decrease in Ce valence state, is 3-5%. This value is too large to be explained in terms of elastic interactions between CeO2 and 200 MeV ions. The experimental result suggests the contribution of 200 MeV Xe induced electronic excitation to the displacements of oxygen atoms.  相似文献   

2.
In this report, we present radiation damage effects in a thin film, tri-layer structure, HfO2/MgO/HfO2. Irradiations were performed with 10 MeV Au ions in a recently developed medium energy ion irradiation facility at Los Alamos National Laboratory, which is described in this paper. Energy deposition by 10 MeV Au ions corresponds to a mixed regime, wherein electronic and nuclear stopping contribute to radiation damage. In this study, we investigated modifications of both surface and bulk properties in order to assess the structural stability of our oxide tri-layers under the severe irradiation conditions employed here. The most dramatic structural changes were observed to occur on the surfaces of the tri-layer samples. Surface features consisted of large craters and spires. The dimensions of these craters and spires exceed those of the individual ion tracks by almost three orders of magnitude. As for the bulk tri-layer structure, our conclusions are that this structure is stable in terms of: (i) resistance to amorphization; (ii) resistance to compositional mixing and (iii) resistance to pronounced nucleation and growth of extended defects. The main effect observed in the tri-layer structure was the transformation of the first HfO2 layer from a monoclinic to either a tetragonal or cubic form of HfO2.  相似文献   

3.
Commercial O-face (0 0 0 1) ZnO single crystals were implanted with 200 keV Ar ions. The ion fluences applied cover a wide range from 5 × 1011 to 7 × 1016 cm−2. The implantation and the subsequent damage analysis by Rutherford backscattering spectrometry (RBS) in channelling geometry were performed in a special target chamber at 15 K without changing the target temperature of the sample. To analyse the measured channelling spectra the computer code DICADA was used to calculate the relative concentration of displaced lattice atoms.Four stages of the damage evolution can be identified. At low ion fluences up to about 2 × 1013 cm−2 the defect concentration increases nearly linearly with rising fluence (stage I). There are strong indications that only point defects are produced, the absolute concentration of which is reasonably given by SRIM calculations using displacement energies of Ed(Zn) = 65 eV and Ed(O) = 50 eV. In a second stage the defect concentration remains almost constant at a value of about 0.02, which can be interpreted by a balance between production and recombination of point defects. For ion fluences around 5 × 1015 cm−2 a second significant increase of the defect concentration is observed (stage III). Within stage IV at fluences above 1016 cm−2 the defect concentration tends again to saturate at a level of about 0.5 which is well below amorphisation. Within stages III and IV the damage formation is strongly governed by the implanted ions and it is appropriate to conclude that the damage consists of a mixture of point defects and dislocation loops.  相似文献   

4.
Room temperature ion irradiation damage studies were performed on a ceramic composite intended to emulate a dispersion nuclear fuel. The composite is composed of 90-mole% MgO and 10-mole% HfO2. The as-synthesized composite was found to consist of Mg2Hf5O12 (and some residual HfO2) particles embedded in an MgO matrix. X-ray diffraction revealed that nearly all of the initial HfO2 reacted with some MgO to form Mg2Hf5O12. Ion irradiations were performed using 10 MeV Au3+ ions at room temperature over a fluence range of 5 × 1016-5 × 1020 Au/m2. Irradiated samples were characterized using both grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM), the latter using both selected-area electron diffraction (SAED) and micro-diffraction (μD) on samples prepared in cross-sectional geometry. Both GIXRD and TEM electron diffraction measurements on a specimen irradiated to a fluence of 5 × 1020 Au/cm2, revealed that the initial rhombohedral Mg2Hf5O12 phase was transformed into a cubic-Mg2Hf5O12 phase. Finally, it is important to note that at the highest ion fluence used in this investigation (5 × 1020 Au/m2), both the MgO matrix and the Mg2Hf5O12 second phase remained crystalline.  相似文献   

5.
ZnAl2O4 spinels have been irradiated with several ions (Ne, S, Kr and Xe) at the IRRSUD beamline of the GANIL facility, in order to determine irradiation conditions (stopping power, fluence) for amorphisation. We observed by transmission electron microscopy (TEM) that with Xe ions at 92 MeV, individual ion tracks are still crystalline, whereas an amorphisation starts below a fluence of 5 × 1012 cm−2 up to a total amorphisation between 1 × 1013 and 1 × 1014 cm−2. The coexistence of amorphous and crystalline domains in the same pristine grain is clearly visible in the TEM images. All the crystalline domains remain close to the same orientation as the original grain. According to TEM and X-ray Diffraction (XRD) results, the stopping power threshold for amorphisation is between 9 and 12 keV nm−1.  相似文献   

6.
Photoconduction behaviour of 75 MeV oxygen ion irradiated (Fluences: 1.8 × 1011, 1.8 × 1012 and 1.8 × 1013 ions/cm2) kapton-H polyimide film in the visible region has been investigated at different temperatures ranging 400-2500 °C and at various electric fields ranging 40-600 kV/cm. A photoinduced exciton formation is the major source for providing charge carriers through thermolization and field-assisted dissociation processes. An attempt has been made to fit the field dependence of the steady state photocurrent to one of the several possible conduction mechanisms. In the high and low fluence (1.8 × 1013 and 1.8 × 1011 ions/cm2) irradiated samples there exists a possibility of Poole-Frankel type of photoconduction mechanism, whereas at intermediate fluence (1.8 × 1012 ions/cm2) a Schottky type photoconduction mechanism may be operative. The log Ips versus 1/T plots consist of two straight lines with a knee point around 800-1000 °C. The activation energy estimated from the slope of these lines is field dependent varying from 0.40 to 0.73 eV and 0.18 to 0.23 eV above and below the knee point, respectively. This indicates the presence of more than one type of trapping levels in irradiated kapton-H polyimide.  相似文献   

7.
Structural modifications in the zircon and scheelite phases of ThGeO4 induced by swift heavy ions (93 MeV Ni7+) at different fluences as well as pressure quenching effects are reported. X-ray diffraction and Raman measurements at room temperature on the irradiated zircon phase of ThGeO4 indicate the occurrence of stresses that lead to a reduction of the cell volume up to 2% followed by its transformation to a mixture of nano-crystalline and amorphous scheelite phases. Irradiation of the zircon phase at liquid nitrogen temperature induces amorphization at a lower fluence (7.5 × 1016 ions/m2), as compared to that at room temperature (6 × 1017 ions/m2). Scheelite type ThGeO4 irradiated at room temperature undergoes complete amorphization at a lower fluence of 7.5 × 1016 ions/m2 without any volume reduction. The track radii deduced from X-ray diffraction measurements on room temperature irradiated zircon, scheelite and low temperature irradiated zircon phases of ThGeO4 are, 3.9, 3.5 and 4.5 nm, respectively. X-ray structural investigations on the zircon phase of ThGeO4 recovered after pressurization to about 3.5 and 9 GPa at ambient temperature show the coexistence of zircon and disordered scheelite phases with a larger fraction of scheelite phase occurring at 9 GPa. On the other hand, the scheelite phase quenched from 9 GPa shows crystalline scheelite phase pattern.  相似文献   

8.
Changes in the diameters and depths of pores were studied in the process of etching polyethyleneterephthalate (PET) films irradiated by Ar ions having an energy of 1 MeV/n. Information about the pore diameters and lengths was obtained with JSM-840 and TEM-125 electron microscopes. The solutions of NaOH (0.5 mol/dm3 and 2 mol/dm3) were used as etchants. Etching was performed at 55 °C and 70 °C. Two methods of sensitization were used: the first one by UV illumination and treatment in dimethylformamide (DMF), the second method just by UV illumination. It was found that the diameters and the depths of pores are larger in films treated according to the first sensitization method. Etching duration (breakthrough time), which leads to through-going pores of the minimal radius, was established. After sensitization according to the first method the track etch rate grows quicker than the transverse etch rate. This gives a possibility to obtain through pores with diameters ranging from 50 nm to several micrometers.  相似文献   

9.
As a preparatory work for constructing the FAIR facility at GSI, samples of stainless steel and copper were irradiated by 950 MeV/u 238U ions and depth-profiles of residual activity were measured by gamma-ray spectroscopy. The isotopes with dominating contribution to the residual activity were identified and their contributions were quantified. In contrast to the previous study performed at lower energies, the activities could no longer be determined from the full-assembly target measurements. Depth-profiling of residual activity of all identified isotopes had to be completed by measurements of individual target foils. The activity contributions were then obtained by integration of the depth-profiles.  相似文献   

10.
We have investigated morphological changes of freshly cleaved CaF2(1 1 1) single crystal surfaces before and after ion irradiation. We show that with or without irradiation the surface undergoes serious changes within minutes after the cleavage if the samples are exposed to ambient conditions. This is most likely due to the adsorption of water and could be avoided only if working under clean ultra-high-vacuum conditions. Ion-induced modifications on this surface seem to act as centers for an increased rate of adsorption so that any quantitative numbers obtained by atomic force microscopy in such experiments have to be treated with caution.  相似文献   

11.
The existence states of deuterium in LiAlO2 were analyzed by in situ IR absorption spectroscopy during irradiation with 3 keV at room temperature. Multiple IR absorption peaks that were related to O-D stretching vibrations were observed, mainly at 2650 cm−1 (O-Dα), 2600 cm−1 (O-Dβ), and 2500 cm−1 (O-Dγ). The O-Dα was assigned to the surface O-D. The O-Dβ and O-Dγ were interpreted as two distinct O-D states for three candidates: O-D of substitutional D+ for Li+; O-D of substitutional D+ for Al3+; and O-D of interstitial D+. O-Dβ was the dominant O-D state for deuterium irradiated into LiAlO2, and had higher stability than O-Dγ. Heating after ion irradiation led to the desorption of D2 and an increase in the intensity of O-Dβ, which implies that some of the deuterium irradiated into LiAlO2 exists in non-O-D states, such as D captured by F centers.  相似文献   

12.
GaInP/GaAs/Ge triple-junction solar cells were irradiated with 0.28, 0.62 and 2.80 MeV protons with fluences ranging from 1 × 1010 cm−2 to 1 × 1013 cm−2. Their performance degradation is analyzed using current-voltage characteristics and spectral response measurements. The degradation rates of the short circuit current, open circuit voltage, and maximum power output increase with fluence, but decrease with increasing proton energy. It was also observed that the spectral response of the GaAs middle cell degrades more significantly than that of the GaInP top cell.  相似文献   

13.
Non-leaky planar waveguide structure has been fabricated in x-cut BiB3O6 crystal by 6 MeV C3+ ion implantation at a dose of 1 × 1014 ions/cm2. The effective refractive indices of the waveguide are measured at a wavelength of 632.8 nm. We perform a computer code based on the finite difference method to reconstruct the refractive index profiles of nx and ny of this waveguide. The beam propagation method is used to calculate the electric and magnetic field profiles in the waveguide region from the reconstructed refractive index profiles. Our simulated data show that the refractive index increased waveguide layer can confine the mode completely.  相似文献   

14.
We report on the secondary electron yields of Au and oxidized aluminum (Al2O3) by impact of heavy ions with energies ranging from 7.92 MeV/amu (12C6) to 2.54 MeV/amu (107Ag47). The obtained results, the first in this energy range using medium-heavy ions, extend the validity of proposed scaling laws obtained with lighter ions. Measurements have been performed using the SIRAD irradiation facility at the 15 MV Tandem of the INFN Laboratory of Legnaro (Italy), to evaluate the performance of ion electron emission microscopy at SIRAD.  相似文献   

15.
Depth profiles of deuterium trapped in single crystal Mo, polycrystalline Mo, and molybdenum trioxide film on polycrystalline Mo irradiated with 200 eV D ions have been measured up to a depth of 8 μm using the D(3He,p)4He nuclear reaction at a 3He energy varied from 0.69 to 4.0 MeV. For the D ion irradiation at 323 K to the highest ion fluence of 5 × 1024 D/m2, the D concentration decreases from several at.% in the near-surface layer to bulk values below 10−4 at.% for single crystal Mo and about 10−2 at.% for polycrystalline Mo. The maximum D concentration in molybdenum trioxide film differs little in value from that for polycrystalline Mo. Blister formation at high fluences is observed for polycrystalline Mo and molybdenum trioxide film, but not for single crystal Mo. As the irradiation temperature increases from 323 to 493 K, the D retention in the polycrystalline Mo decreases from about 3 × 1021 down to about 2 × 1018 D/m2.  相似文献   

16.
In order to study the radiation effects in BaTiO3 ferroelectric crystal, a previously developed shell model is modified. The modifications include adding the ZBL universal potentials at short distances and distance-dependent spring constants for core-shell interactions. The phase transition sequences in BaTiO3 were correctly reproduced using molecular dynamics simulations with this modified shell model. Also, the calculated Frenkel pair formation energies agree well with results obtained by first principles calculations, which suggests that this model is suitable for the simulation of the radiation effects in BaTiO3. The dependence of polarization on the number of oxygen vacancies was also studied.  相似文献   

17.
Electrical properties of silicon diodes with p+n junctions irradiated with 197Au+26 swift heavy ions (energy E = 350 MeV, fluences of 107 cm−2 and 108 cm−2) and silicon diodes irradiated with electrons (energy E = 3.5 MeV, fluences of 1015 cm−2, 5 × 1015 cm−2 and 1016 cm−2) have been investigated. Frequency dependences of the impedance, current-voltage characteristics and switching characteristics of these devices have been studied. Irradiation of the diodes with 197Au+26 ions at a fluence of 108 cm−2 leads to the formation of a quasi-continuous layer of irradiation-induced defects that enable a combination of characteristics such as a reverse resistance recovery time and direct voltage drop that are better than those for electron-irradiated diodes. Still, the irradiation of high-energy ions results in an increase in recombination currents that are larger than those obtained with electron irradiation, and causes more complicated frequency dispersion of the diode parameters.  相似文献   

18.
Recent studies have indicated that, at temperatures relevant to fast reactors and light water reactors, void swelling in austenitic alloys progresses more rapidly when the radiation dose rate is lower. A similar dependency between radiation-induced segregation (RIS) and dose rate is theoretically predicted for pure materials and might also be true in complex engineering alloys. Radiation-induced segregation was measured on 304 and 316 stainless steel, irradiated in the EBR-II reactor at temperatures near 375 °C, to determine if the segregation is a strong function of damage rate. The data taken from samples irradiated in EBR-II is also compared to RIS data generated using proton radiation. Although the operational histories of the reactor irradiated samples are complex, making definitive conclusions difficult, the preponderance of the evidence indicates that radiation-induced segregation in 304 and 316 stainless steels is greater at lower displacement rate.  相似文献   

19.
Silicon nitride layers of 140 nm thickness were deposited on silicon wafers by low pressure chemical vapour deposition (LPCVD) and irradiated at GANIL with Pb ions of 110 MeV up to a maximum fluence of 4 × 1013 cm−2. As shown in a previous work these irradiation conditions, characterized by a predominant electronic slowing-down (Se = 19.3 keV nm−1), lead to damage creation and formation of etchable tracks in Si3N4. In the present study we investigated other radiation-induced effects like out of plane swelling and refractive index decrease. From profilometry, step heights as large as 50 nm were measured for samples irradiated at the highest fluences (>1013 cm−2). From optical spectroscopy, the minimum reflectivity of the target is shifted towards the high wavelengths at increasing fluences. These results evidence a concomitant decrease of density and refractive index in irradiated Si3N4. Additional measurements, performed by ellipsometry, are in full agreement with this interpretation.  相似文献   

20.
The SHI irradiation induced effects on magnetic properties of MgB2 thin films are reported. The films having thickness 300-400 nm, prepared by hybrid physical chemical vapor deposition (HPCVD) were irradiated by 200 MeV Au ion beam (S∼ 23 keV/nm) at the fluence 1 × 1012 ion/cm2. Interestingly, increase in the transition temperature Tc from 35.1 K to 36 K resulted after irradiation. Substantial enhancement of critical current density after irradiation was also observed because of the pinning provided by the defects created due to irradiation. The change in surface morphology due to irradiation is also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号