首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has long been known that the stopping and ranges of atoms and clusters depends on the projectile-target atom mass ratio. Recently, Carroll et al. [S.J. Carroll, P.D. Nellist, R.E. Palmer, S. Hobday, R. Smith, Phys. Rev. Lett. 84 (2000) 2654] proposed that the stopping of clusters also depends on the cohesive energy of the target. We investigate this dependence using a series of molecular-dynamics simulations, in which we systematically change the target cohesive energy, while keeping all other parameters fixed. We focus on the specific case of Au402 cluster impact on van-der-Waals bonded targets. As target, we employ Lennard-Jones materials based on the parameters of Ar, but for which we vary the cohesive energy artificially up to a factor of 20. We show that for small impact energies, E0 ? 100 eV/atom, the range D depends on the target cohesive energy U, D ∝ Uβ. The exponent β increases with decreasing projectile energy and assumes values up to β = 0.25 for E0 = 10 eV/atom. For higher impact energies, the cluster range becomes independent of the target cohesive energy. These results have their origin in the so-called ‘clearing-the way’ effect of the heavy Au402 cluster; this effect is strongly reduced for E0 ? 100 eV/atom when projectile fragmentation sets in, and the fragments are stopped independently of each other. These results are relevant for studies of cluster stopping and ranges in soft matter.  相似文献   

2.
The effect of electronic stopping on the sputtering of metals by cluster impact is discussed. We focus on the specific case of Au13 impact on a Au surface. Using molecular-dynamics simulation, we study several strategies to include electronic stopping. Electronic stopping influences both the magnitude of the sputter yield and the duration of the sputter process. In the usual procedure, electronic stopping only affects sufficiently fast atoms with kinetic energies above a threshold energy, which is of the order of the target cohesive energy. When assuming that electronic stopping holds down to thermal energies <1 eV, or even to 0 eV, the collision spike is rapidly quenched and the sputter yields become unrealistically small. Furthermore, we implement a scheme to include electronic stopping based on local (electron) density information readily available in a simulation.  相似文献   

3.
Depth profiling experiments using secondary ion spectrometry (SIMS) have shown effects that are characteristic to the pairing of the projectile with a Si target. Previous molecular dynamics simulations demonstrate that this unusual behavior is due to the fact that strong covalent bonds are formed between the C atoms in the projectile and the Si atoms in the target, which result in the implantation of carbon into the solid. The focus of this paper is to understand how the formation of chemical bonds affects the net sputtered yield. The results of molecular dynamics simulations of the keV bombardment of Si with C60, Ne60 and 12Ne60 at normal incidence are compared over a range of incident kinetic energies from 5 to 20 keV. The net yields with Ne60 and 12Ne60 are significantly greater than with C60 at all incident kinetic energies, with 12Ne60 having the largest values. Application of the mesoscale energy deposition footprint (MEDF) model shows that the initial deposition of energy into the substrate is similar with all three projectiles. Snapshots of the initial pathway of the projectile atoms through the substrate show a similar lateral and vertical distribution that is centered in the region of the energy footprint. Therefore, the reason for the reduced yield with C60 is that the C atoms form bonds with the Si atoms, which causes them to remain in the substrate instead of being sputtered.  相似文献   

4.
Large gas cluster impacts cause unique surface modification effects because a large number of target atoms are moved simultaneously due to high-density particle collisions between cluster and surface atoms. Molecular dynamics (MD) simulations of large gas cluster impacts on solid targets were carried out in order to investigate the effect of high-density irradiation with a cluster ion beam from the viewpoint of crater formation and sputtering. An Ar cluster with the size of 2000 was accelerated with 20 keV (10 eV for each constituent atom) and irradiated on a Si(1 0 0) solid target consisting of 2 000 000 atoms. The radius of the Ar cluster was scaled by ranging from 2.3 nm (corresponding to the solid state of Ar) to 9.2 nm (64× lower density than solid state). When the Ar cluster was as dense as solid state, the incident cluster penetrated the target surface and generated crater-like damage. On the other hand, as the cluster radius increased and the irradiation particle density decreased, the depth of crater caused by cluster impact was reduced. MD results also revealed that crater depth was mainly dominated by the horizontal scaling rather than vertical scaling. A high sputtering yield of more than several tens of Si atoms per impact was observed with clusters of 4-20× lower volume density than solid state.  相似文献   

5.
The evolution of nanoscale ripple patterns during sub-keV ion sputtering of thermally grown, fused and single crystalline SiO2 surfaces has been investigated by means of atomic force microscopy. For all three materials, different dependencies of the ripple wavelength and the surface roughness on the ion fluence have been found. Within the Bradley-Harper model of pattern formation, the observed differences are consistent with different amounts of surface and near-surface mass transport by ion-enhanced viscous flow which might result from different surface energies of the SiO2 specimens.  相似文献   

6.
Using molecular-dynamics simulation, we study the cluster-induced sputtering of a diatomic (O2) and a triatomic (H2O) molecular target and compare it to the sputtering of an atomic target (Ar). In all three systems, sputtering occurs by the flow of gasified material out of the spike volume into the vacuum above it. Above a threshold, the sputter yield and also the number of dissociations and reactions increase linearly with the total impact energy. The number of reactions occurring is significantly higher than the number of surviving dissociations. The degrees of freedom of the sputtered molecules are not in thermal equilibrium with each other. While for the diatomic target, the internal energy amounts to only 10-20% of the translational energy, it is 40% for H2O. The translational energy distributions of sputtered monomers are strongly reduced at high energies due to molecule dissociations.  相似文献   

7.
Using molecular-dynamics simulation, we study the crater volumes induced by energetic impacts of projectiles containing up to N=1000 atoms. We find that for Lennard-Jones bonded material the crater volume depends solely on the total impact energy E. Above a threshold Eth, the volume rises linearly with E. Similar results are obtained for metallic materials. By scaling the impact energy E to the target cohesive energy U, the crater volumes become independent of the target material. To a first approximation, the crater volume increases in proportion with the available scaled energy, V=aE/U. The proportionality factor a is termed the cratering efficiency and assumes values of around 0.5.  相似文献   

8.
Yttrium iron garnet (Y3Fe5O12 or YIG), an amorphizable ferrimagnetic insulator, is probably the best studied material with respect to track formation and damage morphology. This paper presents first scanning force microscopy (SFM) of surface damage induced by energetic C60 clusters. YIG single crystals were irradiated at normal incidence with 30-MeV C60 cluster ions (kinetic energy ∼0.04 MeV/u) provided by the tandem accelerator of the Institute of Nuclear Physics in Orsay (IPNO). The SFM topographic images show nano-protrusions on the YIG surface; where each hillock is generated by one C60 cluster. The role of stopping power and deposited energy density is discussed in terms of dimensional analysis of the nanostructures. Hillocks created by C60 clusters are compared with those produced by monatomic ions.  相似文献   

9.
Here we describe a recently developed direct Monte Carlo program to study kinetic electron emission from SiO2 target. The program includes excitation of the target electrons (by projectile ions, recoiling target atoms and fast primary electrons), subsequent transport and escape of these electrons from the target surface. The program can be used to calculate the electron yields, distribution of electron excitation points in the target and other physical parameters of the emitted electrons. In order to demonstrate the capabilities of this program, we report a study on the kinetic electron emission from SiO2 induced by fast (1-10 keV) rare gas ions. The calculated kinetic electron yield for various ion energies and masses is in good agreement with the predictions of most frequently applied theoretical model. In addition, the effects of projectile energy, mass and impact angle on the depth distribution of electron excitation points and average escape depth of the outgoing electrons were investigated. It is important to mention that the existing experimental techniques are not capable to measure these parameters.  相似文献   

10.
Structural modifications in the zircon and scheelite phases of ThGeO4 induced by swift heavy ions (93 MeV Ni7+) at different fluences as well as pressure quenching effects are reported. X-ray diffraction and Raman measurements at room temperature on the irradiated zircon phase of ThGeO4 indicate the occurrence of stresses that lead to a reduction of the cell volume up to 2% followed by its transformation to a mixture of nano-crystalline and amorphous scheelite phases. Irradiation of the zircon phase at liquid nitrogen temperature induces amorphization at a lower fluence (7.5 × 1016 ions/m2), as compared to that at room temperature (6 × 1017 ions/m2). Scheelite type ThGeO4 irradiated at room temperature undergoes complete amorphization at a lower fluence of 7.5 × 1016 ions/m2 without any volume reduction. The track radii deduced from X-ray diffraction measurements on room temperature irradiated zircon, scheelite and low temperature irradiated zircon phases of ThGeO4 are, 3.9, 3.5 and 4.5 nm, respectively. X-ray structural investigations on the zircon phase of ThGeO4 recovered after pressurization to about 3.5 and 9 GPa at ambient temperature show the coexistence of zircon and disordered scheelite phases with a larger fraction of scheelite phase occurring at 9 GPa. On the other hand, the scheelite phase quenched from 9 GPa shows crystalline scheelite phase pattern.  相似文献   

11.
In this paper, we report time-of-flight (TOF) secondary ion mass spectroscopy using primary C60 ions with an energy range from several tens of keV to several hundreds of keV. Application of the spectroscopy to the analysis of a poly(amino acid) film revealed that characteristic peaks, necessary for identification of the amino acid in proteins, show higher intensities for medium energy C60 (120 keV and 540 keV ) impacts than those for low energy C60 (30 keV ) impacts. This finding demonstrates that medium energy C60 ion impacts are useful for highly sensitive characterization of amino acids.  相似文献   

12.
Irradiation of graphite, commonly used in nuclear power plants, is known to produce structural damage. Here, experimental and computational methods are used to study defect formation in graphite during Ar irradiation at incident energies of 50 eV. The experimental samples are analyzed with scanning tunneling microscopy to quantify the size distribution of the defects that form. The computational approach is classical molecular dynamic simulations that illustrate the mechanisms by which the defects are produced. The results indicate that defects in graphite grow in concentrated areas and are nucleated by the presence of existing defects.  相似文献   

13.
Classical molecular dynamics simulations have been carried out to study the primary damage due to α-decay self-irradiations in single-, bi-, and poly-crystal UO2 matrices. In all the cases no amorphization has been found, only the creation of few point defects is observed. However, in all grain boundary systems numerous point defects are created along the interfaces. Furthermore, cascade morphologies depend strongly on the grain boundary structure. For symmetrical tilt grain boundaries with small misorientation angles (lower than 20°) the structure at the grain boundaries is composed of edge dislocations, whereas for higher misorientation angles is formed by Schottky defects. The grain boundary structure in the poly-crystal is found to be highly disordered. For the last two systems, cascades seem stopped by the interfaces unlike those with edge dislocation grain boundaries. These types of interface act like sink which traps moving atoms.  相似文献   

14.
Fundamental processes induced in a thick organic system composed of long, well-organized linear molecules by an impact of 5-20 keV C60 are investigated. The organic system is represented by Langmuir-Blodgett multilayers formed from bariated molecules of arachidic acid. The thickness of the system varies between 2 and 16 nm. Coarse-grained molecular dynamics computer simulations are applied to investigate the energy transfer pathways and sputtering yields as a function of the kinetic energy of the projectile and the thickness of the organic overlayer.The results indicate that an impact of keV C60 projectiles leads to significant ejection of organic material. The efficiency of desorption increases with the kinetic energy of the projectile for a given layer thickness. For a constant primary kinetic energy, the sputtering yield goes through a maximum and finally saturates as the LB layer becomes thicker. Such behaviour is caused by a competition between signal enhancement due to increasing number of organic molecules and signal decrease due to lowering of the amount of the primary energy being backreflected into the organic overlayer by the receding organic/metal interface as the layer is getting thicker. When the sample thickness becomes much larger than the penetration depth of the projectile, the sputtering yield is independent of thickness. The deposited energy is channelled by an open and ordered molecular structure, which leads to abnormally long projectile penetration and ion-induced damage.  相似文献   

15.
Based on the surface microstructure of EB-PVD ZrO2 coatings, the ablation effects of a novel method for ceramic modification technique by high-intensity pulsed ion beam irradiation have been studied numerically. Taking the nonlinear depositing energy of ions in the coatings calculated by Monte Carlo methods as the thermal source term in heat transfer equations, the surface melting process and the evolution of temperature of ZrO2 specimens induced by HIPIB irradiation were obtained. About 1 μm in thickness of ZrO2 ceramic was re-solidified after melting, a dense modification coat layer formed, and near the top surface an even denser layer formed. During the calculation the latent heat of ZrO2 is introduced to consider the additional heat due to the phase change between solid-liquid and liquid-gas states. The numerical result about the ablation melted thickness of surface layer is in reasonable agreement with those measured by HIPIB irradiation experiments.  相似文献   

16.
The influence of grain boundaries on the primary damage state created by a recoil nucleus in UO2 matrix is studied here by molecular dynamics simulations. This study is divided in two steps: (1) the study of the structural properties of several symmetrical tilt boundaries for different misorientation angles ranging from 12.7° to 61.9°; and (2) the study of displacement cascades near these grain boundaries. For all the grain boundaries studied, the structure around the interface up to about 2 nm presents a perturbed but stable fluorite lattice. The type of defect at the interface depends directly on the value of the misorientation angles. For the small angles (12.7° and 16.3°) the interface defects correspond to edge dislocations. For higher misorientation angles, a gap of about 0.3 nm exists between the two halves of the bicrystal. This gap is composed of Schottky defects involving numerous vacancies along the interface. About 10 keV displacement cascades were initiated with an uranium projectile close to the interface. In all the cases, numerous point defects are created in the grain boundary core, and the mobility of these defects increases. However, cascade morphologies depend strongly on the grain boundary structure. For grain boundaries with edge dislocations, the evolution of the displacement cascades is similar to those carried out in monocrystals. On the other hand, cascades initiated in grain boundaries with vacancy layer defects present an asymmetry on the number of displaced atoms and the number of point defects created.  相似文献   

17.
The sticking and erosion of C2Hx molecules (where x=0-6), at 300 and 2100 K onto hydrogenated diamond (1 1 1) surfaces was investigated by means of molecular dynamics simulations. We employed both quantum-mechanical and empirical force models. Generally, the sticking probability is observed to somewhat increase when the radical temperature increases and strongly decrease with increasing number of H atoms in the molecule.  相似文献   

18.
The effect of dose variation of γ-irradiation on optical band gap of PbO-B2O3 glasses have been studied in the wavelength region from 200 to 1200 nm. Absorption of glasses in near ultraviolet/visible have been used to calculate the optical mobility gap and width of tail before and after irradiation. The decrease in transmission due to irradiation indicates the formation of colour centers and structural changes in glass matrix. The optical spectrum has been measured before irradiation and in 50 Gy-50 kGy absorbed dose range.  相似文献   

19.
Using molecular-dynamics simulation, we study the sputtering of a Pt(1 1 1) surface under oblique and glancing incidence 5 keV Ar ions. For incidence angles larger than a critical angle ?c, the projectile is reflected off the surface and the sputter yield is zero. We discuss the azimuth dependence of the critical angle ?c with the help of the surface corrugation felt by the impinging ion. If a step exists on the surface, sputtering occurs also for glancing incidence ?>?c. We demonstrate that for realistic step densities, the total sputtering of a stepped surface may be sizable even at glancing incidence.  相似文献   

20.
Germanium nanoparticles embedded in SiO2 matrix were prepared by atom beam sputtering on a p-type Si substrate. The as-deposited films were annealed at temperatures of 973 and 1073 K under Ar + H2 atmosphere. The as-deposited and annealed films were characterized by Raman, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Rutherford backscattering spectrometry was used to quantify the concentration of Ge in the SiO2 matrix of the composite thin films. The formation of Ge nanoparticles were observed from the enhanced intensity of the Ge mode in the Raman spectra as a function of annealing, the appearance of Ge(3 1 1) peaks in the X-ray diffraction data and the Ge vibrational mode in the FTIR spectra. We have irradiated the films using 100 MeV Au8+ ions with a fluence of 1 × 1013 ions/cm2 and subsequently studied them by Raman and FTIR. The results are compared with the ones obtained by annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号