首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
Silicon oxynitride (SixOyNz) layers were synthesized by implanting 16O2+ and 14N2+ 30 keV ions in 1:1 ratio with fluences ranging from 5 × 1016 to 1 × 1018 ions cm−2 into single crystal silicon at room temperature. Rapid thermal annealing (RTA) of the samples was carried out at different temperatures in nitrogen ambient for 5 min. The FTIR studies show that the structures of ion-beam synthesized oxynitride layers are strongly dependent on total ion-fluence and annealing temperature. It is found that the structures formed at lower ion fluences (∼1 × 1017 ions cm−2) are homogenous oxygen-rich silicon oxynitride. However, at higher fluence levels (∼1 × 1018 ions cm−2) formation of homogenous nitrogen rich silicon oxynitride is observed due to ion-beam induced surface sputtering effects. The Micro-Raman studies on 1173 K annealed samples show formation of partially amorphous oxygen and nitrogen rich silicon oxynitride structures with crystalline silicon beneath it for lower and higher ion fluences, respectively. The Ellipsometry studies on 1173 K annealed samples show an increase in the thickness of silicon oxynitride layer with increasing ion fluence. The refractive index of the ion-beam synthesized layers is found to be in the range 1.54-1.96.  相似文献   

2.
The total mass attenuation coefficients (μm), for Cr, Fe, Ni and FexNi1−x (x = 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 and 0.2), FexCryNi1−(x+y) (x = 0.7, y = 0.1; x = 0.5, y = 0.2; x = 0.4, y = 0.3; x = 0.3, y = 0.3; x = 0.2, y = 0.2 and x = 0.1, y = 0.2) and NixCr1−x (x = 0.8, 0.6, 0.5, 0.4 and 0.2) alloys were measured at 22.1, 25.0, 59.5 and 88.0 keV photon energies. The samples were irradiated with 10 mCi Cd-109 and 100 mCi Am-241 radioactive point source using transmission arrangement. The γ- and X-rays were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. Total atomic and electronic cross-sections (σt and σe), effective atomic and electron numbers (Zeff and Neff) were determined experimentally and theoretically using the obtained mass attenuation coefficients for investigated 3d alloys. The theoretical mass attenuation coefficients of each alloy were estimated using mixture rule. The experimental values were compared with the calculated values for all samples.  相似文献   

3.
The thermal conductivities of (U0.68Pu0.30Am0.02)O2.00−x solid solutions (x = 0.00-0.08) were studied at temperatures from 900 to 1773 K. The thermal conductivities were obtained from the thermal diffusivities measured by the laser flash method. The thermal conductivities obtained experimentally up to about 1400 K could be expressed by a classical phonon transport model, λ = (A + BT)−1, A(x) = 3.31 × x + 9.92 × 10−3 (mK/W) and B(x) = (−6.68 × x + 2.46) × 10−4 (m/W). The experimental A values showed a good agreement with theoretical predictions, but the experimental B values showed not so good agreement with the theoretical ones in the low O/M ratio region. From the comparison of A and B values obtained in this study with the ones of (U,Pu)O2−x obtained by Duriez et al. [C. Duriez, J.P. Alessandri, T. Gervais, Y. Philipponneau, J. Nucl. Mater. 277 (2000) 143], the addition of Am into (U, Pu)O2−x gave no significant effect on the O/M dependency of A and B values.  相似文献   

4.
The synthesis of buried silicon nitride insulating layers was carried out by SIMNI (separation by implanted nitrogen) process using implantation of 140 keV nitrogen (14N+) ions at fluence of 1.0 × 1017, 2.5 × 1017 and 5.0 × 1017 cm−2 into 〈1 1 1〉 single crystal silicon substrates held at elevated temperature (410 °C). The structures of ion-beam synthesized buried silicon nitride layers were studied by X-ray diffraction (XRD) technique. The XRD studies reveal the formation of hexagonal silicon nitride (Si3N4) structure at all fluences. The concentration of the silicon nitride phase was found to be dependent on the ion fluence. The intensity and full width at half maximum (FWHM) of XRD peak were found to increase with increase in ion fluence. The Raman spectra for samples implanted with different ion fluences show crystalline silicon (c-Si) substrate peak at wavenumber 520 cm−1. The intensity of the silicon peak was found to decrease with increase in ion fluence.  相似文献   

5.
N profiles of several GaAs1−xNx epitaxial layers with different N mole fractions in the range 0 < x < 0.14 were obtained by using (1) heavy-ion elastic recoil detection analysis (HI-ERDA) along with Rutherford backscattering spectrometry (RBS) using a 35 MeV Si6+ beam, and (2) nuclear reaction analysis (NRA) with the 14N(α, p)17O reaction, also with RBS, using a 3.7 MeV 4He+ beam. The results from the two techniques are compared and the advantages, disadvantages and capabilities are discussed.  相似文献   

6.
An analytical method has been developed for the measurement of a carbon depth profile of the region a few tens of μm from the surface, using a 12C(p, p′γ) reaction. Measurements for a SiC sample coated with a silicon layer and a carbon-implanted silicon sample were performed using this method. Two charged particle detectors and two γ-ray detectors were utilized for the coincident detection of scattered protons and γ-rays from the first excited state (Ex = 4.4 MeV) of 12C. The measured depth profiles agree well with results obtained using a surface profiler and an Auger microprobe. These results demonstrate that this method is useful for the non-destructive analysis of carbon at depths of a few tens of μm from the surface.  相似文献   

7.
(U, Pu) mixed oxides, (U1−yPuy)O2−x, with y = 0.21 and 0.28 are being considered as fuels for the Prototype Fast Breeder Reactor (PFBR) in India. The use of urania-plutonia solid solutions in PFBR calls for accurate measurement of physicochemical properties of these materials. Hence, in the present study, oxygen potentials of (U1−yPuy)O2−x, with y = 0.21 and 0.28 were measured over the temperature range 1073-1473 K covering an oxygen potential range of −550 to −300 kJ mol−1 (O/M ratio from 1.96 to 2.000) by employing a H2/H2O gas equilibration technique followed by solid electrolyte EMFmeasurement. (U1−yPuy)O2−x, with y = 0.40 is being used in the Fast Breeder Test Reactor (FBTR) in India to test the behaviour of fuels with high plutonium content. However, data on the oxygen potential as well as thermal conductivity of the mixed oxides with high plutonium content are scanty. Hence, the thermal diffusivity of (U1−yPuy)O2, with y = 0.21, 0.28 and 0.40 was measured and the results of the measurements are reported.  相似文献   

8.
Electrical properties of silicon diodes with p+n junctions irradiated with 197Au+26 swift heavy ions (energy E = 350 MeV, fluences of 107 cm−2 and 108 cm−2) and silicon diodes irradiated with electrons (energy E = 3.5 MeV, fluences of 1015 cm−2, 5 × 1015 cm−2 and 1016 cm−2) have been investigated. Frequency dependences of the impedance, current-voltage characteristics and switching characteristics of these devices have been studied. Irradiation of the diodes with 197Au+26 ions at a fluence of 108 cm−2 leads to the formation of a quasi-continuous layer of irradiation-induced defects that enable a combination of characteristics such as a reverse resistance recovery time and direct voltage drop that are better than those for electron-irradiated diodes. Still, the irradiation of high-energy ions results in an increase in recombination currents that are larger than those obtained with electron irradiation, and causes more complicated frequency dispersion of the diode parameters.  相似文献   

9.
A study of the effects of ion irradiation of hybrid organic/inorganic modified silicate thin films on their mechanical properties is presented. NaOH catalyzed SiNawOxCyHz thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H+ or 250 keV N2+ at fluences ranging from 1 × 1014 to 2.5 × 1016 ions/cm2. Nanoindentation was used to characterize the films. Changes in hardness and reduced elastic modulus were examined as a function of ion fluence and irradiating species. The resulting increases in hardness and reduced elastic modulus are compared to similarly processed acid catalyzed silicate thin films.  相似文献   

10.
The temperature dependences of the ion-induced electron emission yield γ of highly-oriented pyrolytic graphite (HOPG) under high-fluence (1018-1019 ions/cm2) 30 keV Ar+ ion irradiation at ion incidence angles from θ = 0o (normal incidence) to 80o have been measured to trace both the structure and morphology changes in the basal oriented samples. The target temperature has been varied during continuous irradiation from T = −180 to 400 oC. The surface analysis has been performed by the RHEED and SEM techniques. The surface microgeometry was studied using laser goniophotometry (LGF). The dependences of γ(T) were found to be strongly non-monotonic and essentially different from the ones for Ar+ and N2+ ion irradiation of the polygranular graphites. A sharp peak at irradiation temperature Tp ≈ 150 oC was found. A strong influence of electron transport anisotropy has been observed, and ion-induced microgeometry is discussed.  相似文献   

11.
Ion beam processing of organic/inorganic thin films has been shown to be an effective means in converting polymeric films into their final ceramic-like state. In this study, hybrid sol-gel derived thin films based on TEOS (tetraethylorthosilicate) Si(OC2H5)4 and MTES (methyltriethoxysilane) CH3Si(OC2H5)3 were prepared and deposited on Si substrates by spin coating. After the films were allowed to air dry, they were heat treated at 300 °C for 10 min. Ion irradiation was performed at room temperature using 125 keV H+ and 250 keV N2+ ions with fluences ranging from 1 × 1014 to 5 × 1016 ions/cm2. FT-IR and Raman spectroscopies were used to quantify the chemical structural transformations which occurred including the evolution of the organic components, the cross-linking of silica clusters, and the clustering of carbon.  相似文献   

12.
The present paper deals with the emission of atomic and molecular ions from elemental molybdenum surface under Cs+ bombardment to explore the MCs+ formation mechanism with changing Cs surface coverage. Integrated count of MoCs+ shows a monotonic increase with increasing primary ion energy (1-5 keV). Change in MoCs+ intensity is attributed to the variation of surface work function ? and cesium surface concentration cCs due to varying impact energies. Variation of cCs has been obtained from the expression, cCs ∝ 1/(1 + Y) where Y is the elemental sputtering yield estimated from TRIM calculations. Systematic study of the energy distributions of all species emerging from Mo target has been done to measure the changes in surface work function. Changing slopes of the leading parts of Cs+ energy distributions suggest a substantial depletion in surface work function ? with decreasing primary ion energies. Δ? shows a linear dependence on cCs. The maximum reduction in surface work function Δ?max = 0.69 eV corresponds to the highest value of cCs = 0.5. A phenomenological model, based on the linear dependence of ? on cCs, has been employed to explain the MoCs+ data.  相似文献   

13.
Light emission from a silicon dioxide layer enriched with silicon has been studied. Samples used had structures made on thermally oxidized silicon substrate wafers. Excess silicon atoms were introduced into a 250-nm-thick silicon dioxide layer via implantation of 60 keV Si+ ions up to a fluence of 2 × 1017 cm−2. A 15-nm-thick Au layer was used as a top semitransparent electrode. Continuous blue light emission was observed under DC polarization of the structure at 8-12 MV/cm. The blue light emission from the structures was also observed in an ionoluminescence experiment, in which the light emission was caused by irradiation with a H2+ ion beam of energy between 22 and 100 keV. In the case of H2+, on entering the material the ions dissociated into two protons, each carrying on average half of the incident ion energy. The spectra of the emitted light and the dependence of ionoluminescence on proton energy were analyzed and the results were correlated with the concentration profile of implanted silicon atoms.  相似文献   

14.
Polyethyleneterephthalate (PET) has been modified by 100 keV Ni+ and N+ ions using metal ion from volatile compound (MIVOC) ion source to fluence ranging from 1 × 1014 to 1 × 1016 ions/cm2. The increasing application of polymeric material in technological and scientific field has motivated the use of surface treatment to modify the physical and chemical properties of polymer surfaces. When a material is exposed to ionization radiation, it suffers damage leading to surface activation depending on the type. The surface morphology was observed by atomic force microscopy (AFM). That show the roughness increases with fluence in both the cases. The Ni particles as precipitation in PET were observed by cross-section transmission electron microscopy (XTEM). The optical band gap (Eg) deduced from absorption spectra; was calculated by Tau’c relation. Raman spectroscopy shows quantitatively the chemical nature at the damage caused by the Ni+ and N+ bombardment. The ration of ID/IG shows graphite-like structure is formed on the surface. A layer of hydrogenated amorphous carbon is formed on the surface, which has confirmed by XPS results also.  相似文献   

15.
We used the average of the Thomas-Fermi (TF) electron distribution instead of that of Hartree-Fock (HF) electron distribution as the screening length of an isolated atom. Based on the Firsov theory, we proposed a new Firsov formula of the electronic energy loss which has a simple form ΔEe(Eb) ∞ Se(E) exp(γb)/(1 + βb)6, where Se(E) is the electronic stopping cross section, b = p/a, p and a are the impact parameter and the screening length, respectively, and β and γ are the fitting parameters. Using the present screening lengths with the shell effect and the new Firsov formula, the depth distributions of channeling were simulated by the ACOCT code for 20 keV B+ ions impinging along the [1 1 0] channel direction of silicon (1 1 0) surface. The ACOCT depth profiles of channeling using the new Firsov (solid) local model for the AMLJ potential are in good agreement with the experimental ones.  相似文献   

16.
We report a direct observation of segregation of gold atoms to the near surface regime due to 1.5 MeV Au2+ ion impact on isolated gold nanostructures deposited on silicon. Irradiation at fluences of 6 × 1013, 1 × 1014 and 5 × 1014 ions cm−2 at a high beam flux of 6.3 × 1012 ions cm−2 s−1 show a maximum transported distance of gold atoms into the silicon substrate to be 60, 45 and 23 nm, respectively. At a lower fluence (6 × 1013 ions cm−2) transport has been found to be associated with the formation of gold silicide (Au5Si2). At a high fluence value of 5 × 1014 ions cm−2, disassociation of gold silicide and out-diffusion lead to the segregation of gold to defect - rich surface and interface regions.  相似文献   

17.
Thin films (d  1 μm) of hydrogenated amorphous silicon carbide (a-Si1?xCx:H), deposited by RF reactive magnetron sputtering with different carbon content x, have been implanted with high fluences (Φ = 1016–1017 cm?2) of high-energy (E = 0.2–1 MeV) He+ ions as the implant species. The induced structural modification of the implanted material results in a considerable change of its optical properties, best manifested by a significant shift of the optical absorption edge to lower photon energies as obtained from photo-thermal-deflection spectroscopy (PDS) data. This shift is accompanied by a remarkable increase of the absorption coefficient over one order of magnitude (photo-darkening effect) in the measured photon energy range (0.6–3.8 eV), depending on the ion fluence, energy and carbon content of the films. These effects could be attributed both to additional defect introduction and increased graphitization, as confirmed by Raman spectroscopy and infra-red (IR) optical transmission measurements. The optical contrast thus obtained (between implanted and unimplanted film material) could be made use of in the area of high-density optical data storage using focused high-energy He+ ion beams.  相似文献   

18.
GaN thermal stability is the limiting factor of the growth rate for epitaxially grown films and of the thermal annealing of defects. As a consequence, this issue has been extensively studied for more than one decade. There are, however, substantial differences in the reported kinetics and presumed mechanisms of decomposition, which are primarily related to the reactor design thus, reflecting the complexity of chemical reactions involved. We report here on the use of 1.7 MeV He-ion RBS/channeling for the study of thermal decomposition of MOVPE grown GaN and AlxGa1−xN (x = 0.05-0.5) layers. These layers with thickness of 320 nm were grown on sapphire substrates with 20 nm AlN nucleation layer. Prior to annealing samples were characterized by RBS/channeling, selected samples were also studied by SEM. Thermal treatment was performed in the MOVPE reactor in the temperature range 900-1200 °C in the N2 atmosphere. RBS/channeling analysis provided data on layer thickness, composition and evolution of ingrown defects. GaN decomposition starts at 900 °C and results in the reduction of the layer thickness without observable changes of the film composition. The presence of large density of GaN hillocks on the surface was revealed by SEM after annealing at 1000-1050 °C. Remarkable stability of AlxGa1−xN was observed, this alloy remains unchanged upon annealing at 1200 °C/6 h even for x as low as 0.05.  相似文献   

19.
The structural evolution of silicon oxide films with Ge+ implantation was traced with a positron beam equipped with positron annihilation Doppler broadening and lifetime spectrometers. Results indicate that the film structure change as a function of the annealing temperature could be divided into four stages: (I) T < 300 °C; (II) 300 °C ? T ? 500 °C; (III) 600 °C ? T ? 800 °C; (IV) T ? 900 °C. In comparison with stage I, the increased positron annihilation Doppler broadening S values during stage II is ascribed to the annealing out of point defects and coalescence of intrinsic open volumes in silicon oxides. The obtained long positron lifetime and high S values without much fluctuation in stage III suggest a rather stable film structure. Further annealing above 900 °C brings about dramatic change of the film structure with Ge precipitation. Positron annihilation spectroscopy is thereby a sensitive probe for the diagnosis of microstructure variation of silicon oxide thin films with nano-precipitation.  相似文献   

20.
Uranium-cerium mixed oxides (U1−yCey)O2 (y = 0.2, 0.4, 0.6, 0.8) were prepared by combustion synthesis using citric acid as the fuel. Sintering of the solid solutions was carried out at 1873 K under reduced atmosphere. From the room temperature XRD patterns of the sintered samples it was found that the solid solutions form single phase fluorite structure. The room temperature lattice parameters of (U1−yCey)O2 (y = 0.2, 0.4, 0.6, 0.8) are 0.5458, 0.5446, 0.5434 and 0.5422 nm respectively. Thermal expansion of (U1−yCey)O2 (y = 0.2, 0.4, 0.6, 0.8) in the temperature range 298-1973 K was measured by high temperature X-ray diffraction (HTXRD). The coefficients of thermal expansion increase with increase in CeO2 content in the sample and the measured data in the temperature range 298-1973 K, for (U1−yCey)O2 (y = 0.2, 0.4, 0.6, 0.8) are 18.23, 19.91, 21.59, 23.29 × 10−6 K−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号