首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emission yields of secondary ions necessary for the identification of poly-tyrosine were compared for incident ion impacts of energetic cluster ions (0.8 MeV , 2.4 MeV , and 4.0 MeV ) and swift heavy monoatomic molybdenum ions (4.0 MeV Mo+ and 14 MeV Mo4+) with similar mass to that of the cluster by time-of-flight secondary ion mass analysis combined with secondary ion electric current measurements. The comparison revealed that (1) secondary ion emission yields per impact increase with increasing incident energy within the energy range examined, (2) the 4.0 MeV impact provides higher emission yields than the impact of the monoatomic Mo ion with the same incident energy (4.0 MeV Mo+), and (3) the 2.4 MeV impact exhibits comparable emission yields to that for the Mo ion impact with higher incident energy (14 MeV Mo4+). Energetic cluster ion impacts effectively produce the characteristic secondary ions for poly-tyrosine, which is advantageous for highly sensitive amino acid detection in proteins using time-of-flight secondary ion mass analysis.  相似文献   

2.
The fabrication of reliable isotopic nitrogen standards is achieved in Si through 14N and 15N ion implantation. 60 keV and ions were implanted at 400 °C up to ∼60% peak atomic concentration, yielding nitrogen-saturated silicon layers as measured using resonant nuclear reaction analysis. No isotopic effect has been observed. The nitrogen standards are validated by measurements of stability under ion irradiation. No significant desorption of nitrogen is observed either under a 4He+ ion fluence of 3.36 × 1016 cm−2 or under a 1H+ ion fluence of 8.60 × 1017 cm−2, giving strong evidence that isotopic nitrogen standards can be achieved.  相似文献   

3.
Colour centers formation in Al2O3 by reactor neutrons were investigated by optical measurements (absorption and photoluminescence). The irradiation’s were performed at 40 °C, up to fast neutron (En > 1.2 MeV) fluence of 1.4 × 1018 n cm−2. After irradiation the coloration of the sample increases with the neutron fluence and absorption band at about 203, 255, 300, 357 and 450 nm appear in the UV-visible spectrum. The evolution of each absorption bands as a function of fluence and annealing temperature is presented and discussed. The results indicate that at higher fluence and above 350 °C the F+ center starts to aggregate to F center clusters (F2, F2+ and ). These aggregates disappear completely above 650 °C whereas the F and F+ centers persist even after annealing at 900 °C. It is clear also from the results that the absorption band at 300 nm is due to the contribution of both F2 center and interstitial ions.  相似文献   

4.
5.
6.
Single crystals of sapphire (Al2O3: Fe, Ti, Cr) were irradiated at room temperature with different fluence of 100 MeV Ni ions. Photoluminescence (PL) spectra of pristine and irradiated sapphires were recorded at room temperature under 2.8 eV blue excitation. A broad emission band consists of two bands centered at 516 nm corresponding to F2 defect center and 546 nm corresponding to defect center was observed. The intensity of these defect centers was found to vary with the fluence. defect center develops at low fluence reaching maximum at 5 × 1016 ions/m2 and finally decreasing at higher fluence. The behavior is interpreted in terms of creation of defect centers, their clustering and annihilation.  相似文献   

7.
Several targets that consist of atomic species X (X = N, O, Cl, S, Br) adsorbed at hollow sites on the Cu(1 0 0) surface have been examined with low-fluence secondary ion mass spectrometry (SIMS). The positive and negative secondary ion (SI) abundance distributions, which show a range of characteristics, have been discussed with the aid of thermochemical data derived from ab initio calculations. In positive SIMS, CuX+ is never observed, while the only heteronuclear (mixed-atom) SI that is observed for all five systems is Cu2X+. In negative SIMS, the dominant heteronuclear species for all systems is , except for N/Cu(1 0 0), which produces no , ions. Cu emission is observed only for O/Cu(1 0 0). By analogy with results from laser ablation studies of O/Cu targets, it is conjectured that Cu is a daughter product of the gas-phase dissociation of polyatomic Cu-O anion clusters.  相似文献   

8.
Measurements of K-shell X-ray production cross sections by 12C4+ (beam energies between 12 MeV and 14 MeV), and 16O5+ ions (with energies between 12.5 MeV and 15 MeV) are presented. The target elements were selected lanthanoids (Ce, Gd, Dy, Ho and Er). The resulting measurements are evaluated through comparisons with the eECPSShsR-UA theory, the MECPSSR model and the adiabatic perturbation (also known as direct molecular orbital, MO) theory, using a scaling based on the reduced velocity parameter . Consideration is given to multiple ionization effects and electron capture contribution to K-shell ionization. An evaluation with previously published values is also given. It is shown that the behavior of the ratios of experimental to theoretical cross sections is different for both ions. The models do not seem to be accurate to predict the X-ray production cross sections for 12C4+ ions, while the MECPSSR theory predicts much better the experimental data for 16O5+ than the eECPSShsR-UA.  相似文献   

9.
In this paper, we report time-of-flight (TOF) secondary ion mass spectroscopy using primary C60 ions with an energy range from several tens of keV to several hundreds of keV. Application of the spectroscopy to the analysis of a poly(amino acid) film revealed that characteristic peaks, necessary for identification of the amino acid in proteins, show higher intensities for medium energy C60 (120 keV and 540 keV ) impacts than those for low energy C60 (30 keV ) impacts. This finding demonstrates that medium energy C60 ion impacts are useful for highly sensitive characterization of amino acids.  相似文献   

10.
The morphology and interface structure of α-Fe2O3 islands grown on α-Al2O3 single crystals (sapphire) by Fe-ion-implantation and annealing in an oxidizing atmosphere have been studied using transmission electron microscopy. The α-Fe2O3 islands have the orientation relationship of and with sapphire. The typical outline of α-Fe2O3 islands consists of two (0 0 0 1) and six planes. The interfaces between α-Fe2O3 islands and sapphire are semicoherent, that is coherent regions separated by misfit dislocations at the interfaces. When imaged along the direction, the projected Burgers vector is determined to be . When imaged along the direction, the projected Burgers vector is determined to be . These misfit dislocations form a network structure at the interface to accommodate the mismatch between the lattices of the α-Fe2O3 and the α-Al2O3.  相似文献   

11.
In this paper, we describe calculations that we have carried out of cross sections for rearrangement processes in very low-energy helium + antihydrogen scattering that result in or or . A significantly more accurate method from that used previously [E.A.G. Armour, S. Jonsell, Y. Liu, A.C. Todd, Nucl. Instr. and Meth. B 247 (2006) 127] is used to calculate the entrance channel wave function. Results are presented for the first two processes. Mention is made of the use of the method in calculations of low-energy e+H2 scattering.  相似文献   

12.
The preparation of isotopically pure targets of 20Ne, 24Mg, 28Si, 32S, and 36Ar by the implantation of 25-70 keV ions into carbon foils is described.  相似文献   

13.
Carbon cluster ions (n = 1-5) and Cl+, Ti+, Ni+ ions were used to bombard polycarbonate (PC) films. By comparing the electronic energy loss and the number of chromophores at a fixed wavelength, we obtained the electronic energy loss Se of carbon cluster ions in PC.  相似文献   

14.
Significant changes in texture occur in nanocrystalline Ti, TiN and NiO layers during irradiation with 350 MeV Au ions. The angle between ion beam and layer normal Θ was between 30° and 70°. The major effect is a collective rotation of the nanocrystals. In case of ω layers the texture rotated by more than 70° at an ion fluence . In addition to grain rotation, the layers exhibit a shear motion like that observed previously with amorphous materials. Below about the grain growth is small and grain rotation is reversible, i.e. reversing the sign of Θ and applying the same Φt, the grains roll back into their original orientation. The second observed effect is the alignment of the grains, whose coalescence eventually leads to a mosaic crystal. However, grain rotation is absent or immeasurably small in micro-crystalline titanium. An attempt to understand the processes in nanocrystalline materials in terms of amorphous grain boundaries, as well as the disclination dipole diffusion along the grain boundary was made.  相似文献   

15.
Experiments for guided transmission of 3 keV Ne7+ ions through nanocapillaries in insulating PET polymers are reported. The ion guiding was studied for a two types of PET samples which consist of 200 nm capillaries with densities of and . The width of the emission profile and the fraction of transmitted ions were measured as a function of the capillary tilt angle. For the high capillary density the profile width of the transmitted ions is independent of the tilt angle in agreement previous studies. However, for the low-density sample the profile width was found to increase by a factor of 2 as the tilt angle increases from 0° to 8°. The results for the fraction of transmitted ions are used to evaluate the guiding angle, which specifies the guiding power of the material. The guiding powers were found to be equal for the two samples. The present results are discussed in terms of scaling laws, which have recently been established.  相似文献   

16.
17.
The electronic structures, dielectric function and absorption spectra for the perfect BaWO4 (BWO) crystal and the BWO crystal containing barium vacancy () have been studied using density functional theory code CASTEP with the lattice structure optimized. The results indicate that the optical properties of the BWO crystal exhibit anisotropy and its optical symmetry coincide with lattice structure geometry of the BWO crystal. For the BWO crystal containing , there exhibit four absorption bands peaking at 0.71 eV (1751 nm), 1.85 eV (672 nm), 3.43 eV (362 nm) and 3.85 eV (322 nm), respectively. The origins of the 370 nm absorption band should be related to the .  相似文献   

18.
Silicon carbide offers unique applications as a wide bandgap semiconductor. This paper reviews various aspects of ion implantation in 4H-SiC studied with a view to optimise ion implantation in silicon carbide. Al, P and Si ions with keV energies were used. Channelling effects were studied in both a-axis and c-axis crystals as a function of tilts along major orthogonal planes and off the major orthogonal planes. Major axes such as [0 0 0 1] and the and minor axis like the showed long channelling tails and optimum tilts for minimising channelling are recommended. TEM analyses of the samples showed the formation of (0 0 0 1) prismatic loops and the loops as well,in both a and c-cut crystals. We also note the presence of voids only in P implanted samples implanted with amorphising doses. The competing process between damage accumulation and dynamic annealing was studied by determining the critical temperature for the transition between crystalline and amorphous SiC and an activation energy of 1.3 eV is extracted.  相似文献   

19.
We employed a conic-electrode electrostatic ion resonator (ConeTrap) to store the recoil ions resulting from collision between 56 keV Ar8+ ions and C60 in order to study their stability over a long time range (several milliseconds). The originality of our method, based on the trapping of a single ion to preserve the detection in coincidence of all the products of the collision, is presented in detail. Our results show that C60 ions produced in such collisions are stable in the considered observation time. By employing the ConeTrap as a secondary mass spectrometer in order to let the ions oscillate only for a single period, we have been able to observe delayed evaporation of cold ions 20 μs after the collision. We interpret quantitatively the relative yields of daughter ions with a cascade model in which the transition rates are estimated via the commonly used Arrhenius law, taking into account the contribution of the radiative decay.  相似文献   

20.
Defect centers induced by gamma irradiation in Ce doped BaBPO5 were investigated using EPR spectroscopy. From EPR studies, three phosphorous centered radicals were characterized on the basis of observed 31P hyperfine splitting and g values as , and radicals. In addition to this, two types of boron oxygen hole centers (BOHC) and O were also formed at room temperature. An intense broad signal in sample annealed in argon (g = 1.9258 and g = 1.8839) was assigned to Ce3+ ions associated with the electron trapped at anion vacancy or nearby lattice defect. TSL studies showed two glow peaks, a relatively weaker one at 425 K and an intense one at 575 K. Spectral studies of the TSL glow peaks have shown that Ce3+ ion acts as emission center. From the temperature dependence of the EPR spectra of gamma irradiated samples, the glow peaks at 425 K and 575 K were attributed to thermal destruction of /O and BOHC, respectively, by trapping of electrons from elsewhere. The energy released in electron hole recombination process is used for the excitation of Ce3+ ions resulting in these glow peaks at 425 K and 575 K. The spectral studies of the TSL glow peaks have shown emission at 330 nm indicating Ce3+ acts as the luminescent centre. The trap depth and the frequency factor for the 425 K and 575 K peaks were determined using different heating rates method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号