首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adapter proteins link catalytic signaling proteins to cell surface receptors or downstream effector proteins. In this paper, we present the cDNA sequence F2771, isolated from an activated CD8+ T cell cDNA library. The F2771 cDNA encodes a novel putative adapter protein. The predicted amino acid sequence includes an SH2 domain as well as putative SH3 and phosphotyrosine binding interaction motifs, but lacks any known catalytic domains. The expression of the gene is limited to tissues of the immune system and, in particular, activated T cells. The protein expressed by F2771 cDNA in transfected COS cells is localized in the cytoplasm. A polyclonal antiserum raised against an F2771-encoded peptide reacts with a tyrosine-phosphorylated 52-kDa protein expressed in phytohemagglutinin-stimulated peripheral blood mononuclear cells. The gene is localized to chromosome 1q21, a region often found to be aberrant in lymphomas. The T cell-specific expression and the rapid induction of mRNA expression upon receptor binding, as well as the lack of catalytic domains in the presence of protein interaction domains, indicate that the F2771 gene encodes a novel T cell-specific adapter protein (TSAd) involved in the control of T cell activation.  相似文献   

2.
CD28 is a 44-kDa homodimeric receptor that is expressed on the majority of T cells. Engagement of the CD28 receptor by soluble anti-CD28 mAb in conjunction with phorbol ester (PMA) induces the production of cytokines and the proliferation of resting T cells via signal transduction pathways independent of the TCR. Evidence is provided herein that CD28 signals leading to cytokine production do not require the p59fyn (Fyn) tyrosine kinase, whereas CD28-mediated proliferation is dependent on the presence of the Fyn kinase in thymic, but not lymph node, cells. The defect in proliferation is not due to failure of IL-2R signaling, since addition of high concentrations of exogenous IL-2 can overcome the proliferative defect. Analysis of CD28-directed induction of the IL-2R alpha (CD25)-chain, which confers high affinity binding to IL-2, showed that Fyn-deficient thymocytes, but not lymph node cells, failed to up-regulate CD25 expression following anti-CD28 and PMA stimulation. Thus, the Fyn tyrosine kinase is critically required for thymic CD28-mediated CD25 expression and proliferation but not for CD28-mediated cytokine production.  相似文献   

3.
Costimulation was originally defined and characterized during primary T cell activation. The signaling events that regulate subsequent antigen encounters by T cells are less well defined. In this study we examined the role of CD30 in T cell activation and defined factors that regulate expression of CD30 on T cells. We demonstrate that CD30 expression is restricted to activated T cells and regulated by CD28 signal transduction. In contrast to CD28-expressing TCR Tg cells, CD28-deficient TCR Tg cells did not express CD30 when cultured with peptide and APCs. However, rIL-4 reconstituted CD30 expression on CD28-deficient TCR Tg cells. Blockade of CD28 interactions or depletion of IL-4 inhibited the induction of CD30, suggesting that both CD28 and IL-4 play important roles in the induction of CD30 expression on wild-type cells. However, CD28 signaling did not up-regulate CD30 expression solely through its ability to augment IL-4 production because IL-4-deficient T cells stimulated with anti-CD3 and anti-CD28 expressed CD30. Induction of CD30 in the absence of IL-4 was not due to the IL-4-related cytokine IL-13. CD30, when expressed on an activated T cell, can act as a signal transducing receptor that enhances the proliferation of T cells responding to CD3 crosslinking. Collectively, the data suggest that T cell expression of CD30 is dependent on the presence of CD28 costimulatory signals or exogenous IL-4 during primary T cell activation. Once expressed on the cell surface, CD30 can serve as a positive regulator of mature T cell function.  相似文献   

4.
The widely expressed c-Crk protein, composed of one SH2 and two SH3 domains, lacks an apparent catalytic domain, suggesting that it functions through the formation of specific complexes with other proteins. Bacterially expressed c-Crk formed in vitro highly stable complexes via the first SH3 domain [SH3(N)]. Most prominent were a 185 kDa protein of unknown identity (p185), Sos- immunoreactive bands of 170 kDa (p170) and 145 to 155 kDa bands, corresponding to the recently cloned C3G protein. p170 also bound to Ash/Grb2 and Nck while p185 and C3G bound only to Crk. Additional Crk binding proteins were found in hematopoietic cells, particularly the myeloid-monocytic lineage. The protein binding properties of Crk were subsequently compared to CRKL, the product of a homologous but distinct gene, and found to be very similar. The binding of two guanine nucleotide exchange factors, Sos and C3G, to Crk and CRKL indicates that Ras or related proteins likely play a role in signaling through Crk family proteins.  相似文献   

5.
Recent data indicate that the cell surface glycoprotein CD5 functions as a negative regulator of T cell receptor (TCR)-mediated signaling. In this study, we examined the regulation of CD5 surface expression during normal thymocyte ontogeny and in mice with developmental and/or signal transduction defects. The results demonstrate that low level expression of CD5 on CD4(-)CD8(-) (double negative, DN) thymocytes is independent of TCR gene rearrangement; however, induction of CD5 surface expression on DN thymocytes requires engagement of the pre-TCR and is dependent upon the activity of p56(lck). At the CD4(+)CD8(+) (double positive, DP) stage, intermediate CD5 levels are maintained by low affinity TCR-major histocompatibility complex (MHC) interactions, and CD5 surface expression is proportional to both the surface level and signaling capacity of the TCR. High-level expression of CD5 on DP and CD4(+) or CD8(+) (single positive, SP) thymocytes is induced by engagement of the alpha/beta-TCR by (positively or negatively) selecting ligands. Significantly, CD5 surface expression on mature SP thymocytes and T cells was found to directly parallel the avidity or signaling intensity of the positively selecting TCR-MHC-ligand interaction. Taken together, these observations suggest that the developmental regulation of CD5 in response to TCR signaling and TCR avidity represents a mechanism for fine tuning of the TCR signaling response.  相似文献   

6.
The Src homology 2 (SH2) domain-containing protein Grb7 and the erbB2 receptor tyrosine kinase are overexpressed in a subset of human breast cancers. They also co-immunoprecipitate from cell lysates and associate directly in vitro. Whereas the Grb7 SH2 domain binds strongly to erbB2, the SH2 domain of Grb14, a protein closely related to Grb7, does not. We have investigated the preferred binding site of Grb7 within the erbB2 intracellular domain and the SH2 domain residues that determine the high affinity of Grb7 compared with Grb14 for this site. Phosphopeptide competition and site-directed mutagenesis revealed that Tyr-1139 of erbB2 is the major binding site for the Grb7 SH2 domain, indicating an overlap in binding specificity between the Grb7 and Grb2 SH2 domains. Substituting individual amino acids in the Grb14 SH2 domain with the corresponding residues from Grb7 demonstrated that a Gln to Leu change at the betaD6 position imparted high affinity erbB2 interaction, paralleled by a marked increase in affinity for the Tyr-1139 phosphopeptide. The reverse switch at the betaD6 position abrogated Grb7 binding to erbB2. This residue therefore represents an important determinant of SH2 domain specificity within the Grb7 family.  相似文献   

7.
Interleukin-5 (IL-5) regulates the growth and function of eosinophils. It induces rapid tyrosine phosphorylation of Lyn and Jak2 tyrosine kinases. The role of tyrosine phosphatases in IL-5 signal transduction has not been investigated. In this study, we provide first evidence that SH2 protein tyrosine phosphatase 2 (SHPTP2) phosphotyrosine phosphatase plays a key role in prevention of eosinophil death by IL-5. We found that IL-5 produced a rapid activation and tyrosine phosphorylation of SHPTP2 within 1 min. The tyrosine phosphorylated SHPTP2 was complexed with the adapter protein Grb2 in IL-5-stimulated eosinophils. Furthermore, SHPTP2 appeared to physically associate with beta common (betac) chain of the IL-5 receptor (IL-5betacR). The association of SHPTP2 with IL-5betacR was reconstituted using a synthetic phosphotyrosine-containing peptide, betac 605-624, encompassing tyrosine (Y)612. The binding to the phosphotyrosine-containing peptide increased the phosphatase activity of SHPTP2, whereas the same peptide with the phosphorylated Y612--> F mutation did not activate SHPTP2. Only SHPTP2 antisense oligonucleotides, but not sense SHPTP2, could inhibit tyrosine phosphorylation of microtubule-associated protein kinase, and reverse the eosinophil survival advantage provided by IL-5. Therefore, we conclude that the physical association of SHPTP2 with the phosphorylated betac receptor and Grb2 and its early activation are required for the coupling of the receptor to the Ras signaling pathway and for prevention of eosinophil death by IL-5.  相似文献   

8.
Two T cell-specific src-family tyrosine kinases, p56 lck (lck) and p59 fyn (fyn), are implicated in regulating PI 3-kinase activity in response to interleukin-2 (IL-2), a cytokine that induces T cell proliferation. The src- homology domains 3 (SH3) of src-family kinases can directly interact with the PI 3-kinase regulatory subunit p85 and this may be a mechanism to regulate PI 3-kinase activity. In order to understand the mode of PI 3-kinase activation by the IL-2 receptor, we examined the association of PI 3-kinase to SH2 and SH3 domains of lck and fyn in IL-2-dependent kit 225 cells. The fyn SH3 domain bound more PI 3-kinase and its p85 subunit than the lck SH3 domain, while the lck SH2 domain bound more PI 3-kinase than the fyn SH2 domain. None of these interactions were regulated by IL-2. Low binding of PI 3-kinase to the lck SH3 domain was not observed in IL-2-independent Jurkat T cells. Thus, SH3 and SH2 domains of lck and fyn bound different amounts of PI 3-kinase, a feature that was dependent on a T cell type, but was not influenced by IL-2.  相似文献   

9.
BACKGROUND: Human immunodeficiency virus (HIV) Nef protein accelerates virulent progression of acquired immunodeficiency syndrome (AIDS) by its interaction with specific cellular proteins involved in signal transduction and host cell activation. Nef has been shown to bind specifically to a subset of the Src family of kinases. The structures of free Nef and Nef bound to Src homology region 3 (SH3) domain are important for the elucidation of how the affinity and specificity for the Src kinase family SH3 domains are achieved, and also for the development of potential drugs and vaccines against AIDS. RESULTS: We have determined the crystal structures of the conserved core of HIV-1 Nef protein alone and in complex with the wild-type SH3 domain of the p59fyn protein tyrosine kinase (Fyn), at 3.0 A resolution. Comparison of the bound and unbound Nef structures revealed that a proline-rich motif (Pro-x-x-Pro), which is implicated in SH3 binding, is partially disordered in the absence of the binding partner; this motif only fully adopts a left-handed polyproline type II helix conformation upon complex formation with the Fyn SH3 domain. In addition, the structures show how an arginine residue (Arg77) of Nef interacts with Asp 100 of the so-called RT loop within the Fyn SH3 domain, and triggers a hydrogen-bond rearrangement which allows the loop to adapt to complement the Nef surface. The Arg96 residue of the Fyn SH3 domain is specifically accommodated in the same hydrophobic pocket of Nef as the isoleucine residue of a previously described Fyn SH3 (Arg96-->lle) mutant that binds to Nef with higher affinity than the wild type. CONCLUSIONS: The three-dimensional structures support evidence that the Nef-Fyn complex forms in vivo and may have a crucial role in the T cell perturbating action of Nef by altering T cell receptor signaling. The structures of bound and unbound Nef reveal that the multivalency of SH3 binding may be achieved by a ligand induced flexibility in the RT loop. The structures suggest possible targets for the design of inhibitors which specifically block Nef-SH3 interactions.  相似文献   

10.
Using a rapid single-step affinity chromatography procedure we have isolated the unactivated estrogen receptor from bovine uterus. Results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analyses for protein extracts recovered from affinity chromatography of receptor cytosols, either preincubated or untreated with estradiol, suggest a component structure for the intact oligomeric receptor which includes hsp90, hsp70, p59, a 40-kDa cyclophilin-related protein, and an uncharacterized 22-kDa protein species. We have chemically determined the amino acid sequences of eight peptides derived from the 40-kDa component and now report the cloning and primary sequence of a cDNA encoding this protein, which is designated estrogen receptor-binding cyclophilin (ERBC). Homology analyses confirm that ERBC is a new member of the cyclophilin family and contains a C-terminal domain with significant sequence homology to an internal region of p59, a binding protein for the immunosuppressant FK506 (FKBP59). This conserved region includes a 3-unit tetratricopeptide repeat domain bounded at the C terminus by a putative calmodulin binding site. We propose that the tetratricopeptide repeat domain mediates the protein interaction properties of ERBC and p59. Both immunophilins may have important roles in receptor assembly and may represent a new category of ligand- and calcium-dependent modulators of protein function.  相似文献   

11.
The phagocyte NADPH oxidase is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The activation involves assembly of membrane-integrated cytochrome b558 comprising gp91(phox) and p22(phox), two specialized cytosolic proteins (p47(phox) and p67(phox)), each containing two Src homology 3 (SH3) domains, and the small G protein Rac. In the present study, we show that the N-terminal SH3 domain of p47(phox) binds to the C-terminal cytoplasmic tail of p22(phox) with high affinity (KD = 0.34 microM). The binding is specific to this domain among several SH3 domains including the C-terminal one of p47(phox) and the two of p67(phox) and requires the Pro156-containing proline-rich sequence but not other putative SH3 domain-binding sites of p22(phox). Replacement of Trp193 by Arg in the N-terminal SH3 domain completely abrogates the association with p22(phox). A mutant p47(phox) with this substitution is incapable of supporting superoxide production under cell-free activation conditions. These findings provide direct evidence that the interaction between the N-terminal SH3 domain of p47(phox) and the proline-rich region of p22(phox) is essential for activation of the NADPH oxidase.  相似文献   

12.
Upon binding of platelet-derived growth factor (PDGF), the PDGF beta receptor (PDGFR) undergoes autophosphorylation on distinct tyrosine residues and binds several SH2-domain-containing signal relay enzymes, including phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein of Ras (RasGAP), and the tyrosine phosphatase SHP-2. In this study, we have investigated whether PDGF-dependent PI3K activation is affected by the other proteins that associate with the PDGFR. We constructed and characterized a series of PDGFR mutants which contain binding sites for PI3K as well as one additional protein, either RasGAP, SHP-2, or PLC gamma. While all of the receptors had wild-type levels of PDGF-stimulated tyrosine kinase activity and associated with comparable amounts of PI3K activity, their abilities to trigger accumulation of PI3K products in vivo differed dramatically. The wild-type receptor, as well as receptors that recruited PI3K or PI3K and SHP-2, were all capable of fully activating PI3K. In contrast, receptors that associated with PI3K and RasGAP or PI3K and PLC gamma displayed a greatly reduced ability to stimulate production of PI3K products. When this series of receptors was tested for their ability to activate Ras, we observed a strong positive correlation between Ras activation and PI3K activation. Further investigation of the relationship between Ras and PI3K indicated that Ras was upstream of PI3K. Thus, activation of PI3K requires not only binding of PI3K to the tyrosine-phosphorylated PDGFR but accumulation of GTP-bound Ras as well. Furthermore, PLC gamma and RasGAP negatively modulate PDGF-dependent PI3K activation. Finally, PDGF-stimulated signal relay can be regulated by altering the ratio of SH2-domain-containing enzymes that are recruited to the PDGFR.  相似文献   

13.
The interaction of the Fyn SH3 domain with the p85 subunit of PI3-kinase is investigated using structural detail and thermodynamic data. The solution structure complex of the SH3 domain with a proline-rich peptide mimic of the binding site on the p85 subunit is described. This indicates that the peptide binds as a poly(L-proline) type II helix. Circular dichroism spectroscopic studies reveal that in the unbound state the peptide exhibits no structure. Thermodynamic data for the binding of this peptide to the SH3 domain suggest that the weak binding (approximately 31 microM) of this interaction is, in part, due to the entropically unfavorable effect of helix formation (delta S0 = -78 J.mol-1.K-1). Binding of the SH3 domain to the intact p85 subunit (minus its own SH3 domain) is tighter, and the entropic and enthalpic contributions are very different from those given by the peptide interaction (delta S0 = +252 J.mol-1.K-1; delta H0 = +44 kJ.mol-1). From these dramatically different thermodynamic measurements we are able to conclude that the interaction of the proline-rich peptide does not effectively mimic the interaction of the intact p85 subunit with the SH3 domain and suggest that other interactions could be important.  相似文献   

14.
Signal transduction through integrin molecules expressed on platelets and nonlymphoid cells involves activation of the intracellular focal adhesion kinase ppI25FAK (FAK) to phosphorylate substrate proteins on tyrosine residues. Similar mechanisms are also functional in T-lymphocytes through the beta 1-integrin VLA-4. A putative FAK-related phosphoprotein (fakB) was identified that is responsive to intracellular signals induced through ligation of antigen receptors on both T- and B-lymphocytes, and whose induced tyrosine phosphorylation is augmented by TCR costimulation through the adhesion/costimulatory receptors CD2 and CD4. In this report, fakB is shown to respond to extracellular signals through the beta 2-integrin LFA-1 in the absence of primary signals through the TCR. Protein-protein complex formation was observed involving an association between fakB, phospholipase C gamma 1 (PLC gamma 1), and the tyrosine phosphoprotein pp35-36. Evidence is provided here that fakB interacts with PLC gamma 1 through its SH3 domain. The association between fakB and PLC gamma 1 does not appear to require T-cell activation, whereas the induced tyrosine phosphorylation of the protein complex components occurs following engagement of LFA-1. These data indicate that the beta2-integrin LFA-1 expressed on T-lymphocytes stimulates a novel, FAK-related molecule that may function in the interplay between adhesion receptors and intracellular signaling enzymes responsible for downstream second messenger generation.  相似文献   

15.
The adapter protein Shc has been implicated in mitogenic signaling via growth factor receptors, cytokine receptors, and antigen receptors on lymphocytes. Besides the well characterized interaction of Shc with molecules involved in Ras activation, Shc also associates with a 145-kDa tyrosine-phosphorylated protein upon triggering via antigen receptors and many cytokine receptors. This 145-kDa protein has been recently identified as an SH2 domain containing 5'-inositol phosphatase (SHIP) and has been implicated in the regulation of growth and differentiation in hematopoietic cells. In this report, we have addressed the molecular details of the interaction between Shc and SHIP in vivo. During T cell receptor signaling, tyrosine phosphorylation of SHIP and its association with Shc occurred only upon activation. We demonstrate that the phosphotyrosine binding domain of Shc is necessary and sufficient for its association with tyrosine-phosphorylated SHIP. Through site-directed mutagenesis, we have identified two tyrosines on SHIP, Tyr-917, and Tyr-1020, as the principal contact sites for the Shc-phosphotyrosine binding domain. Our data also suggest a role for the tyrosine kinase Lck in phosphorylation of SHIP. We also show that the SH2 domain of SHIP is dispensable for the Shc-SHIP interaction in vivo. These data have implications for the localization of the Shc.SHIP complex and regulation of SHIP function during T cell receptor signaling.  相似文献   

16.
CD19 is a B cell surface protein capable of forming non-covalent molecular complexes with a number of other B cell surface proteins including the CD21/CD81/Leu-13 complex as well as with surface immunoglobulin. CD19 tyrosine phosphorylation increases after B cell activation, and is proposed to play a role in signal transduction through its cytoplasmic domain, which contains nine tyrosine residues. Several second messenger proteins have been shown to immunoprecipitate with CD19, including p59 Fyn (Fyn), p59 Lyn (Lyn) and phosphatidylinositol-3 kinase (PI-3 kinase). These associations are predicted to occur via the src-homology 2 (SH2) domains of the second messenger proteins. Two of the cytoplasmic tyrosines in the CD19 cytoplasmic region contain the consensus binding sequence for the PI-3 kinase SH2 domain (YPO4-X-X-M). However, the reported consensus binding sequence for the Fyn and Lyn SH2 domains (YPO4-X-X-I/L) is not found in CD19. We investigated the capacity of CD19 cytoplasmic tyrosines to bind both Fyn and PI-3 kinase SH2-domain fusion proteins. In activated B cells, both Fyn and PI-3 kinase SH2-domain fusion proteins precipitate CD19. Using synthetic tyrosine-phosphorylated peptides comprising each of the CD19 cytoplasmic tyrosines and surrounding amino acids, we investigated the ability of the Fyn SH2 and PI-3 kinase SH2 fusion proteins to bind to the different CD19 cytoplasmic phosphotyrosine peptides. ELISA revealed that the two CD19 cytoplasmic tyrosine residues contained within the Y-X-X-M sequences (Y484 and Y515) bound preferentially to the PI-3 kinase SH2-domain fusion proteins. Two different tyrosines (Y405 and Y445) bound preferentially to the Fyn SH2-domain fusion protein via a novel sequence, Y-E-N-D/E, different from that previously reported for the Fyn SH2 domain. In precipitation studies, peptide Y484 was able to compete with tyrosine phosphorylated CD19 specifically for binding to the PI-3 kinase SH2 domain fusion proteins, while peptides Y405 and Y445 were able to compete specifically for binding to the Fyn SH2 domain fusion proteins. These results indicate that CD19 may be capable of binding both Fyn and PI-3 kinase concurrently, suggesting a mechanism for CD19 signal transduction, in which binding of PI-3 kinase to the Fyn SH3 domain results in activation of PI-3 kinase.  相似文献   

17.
Heterodimeric class IA phosphoinositide 3-kinase (PI 3-kinase) plays a crucial role in a variety of cellular signalling events downstream of a number of cell-surface receptor tyrosine kinases. Activation of the enzyme is effected in part by the binding of two Src homology-2 domains (SH2) of the 85 kDa regulatory subunit to specific phosphotyrosine-containing peptide motifs within activated cytoplasmic receptor domains. The solution structure of the uncomplexed C-terminal SH2 (C-SH2) domain of the p85 alpha subunit of PI 3-kinase has been determined by means of multinuclear, double and triple-resonance NMR experiments and restrained molecular-dynamics simulated-annealing calculations. The solution structure clearly indicates that the uncomplexed C-SH2 domain conforms to the consensus polypeptide fold exhibited by other SH2 domains, with an additional short helical element at the N terminus. In particular, the C-SH2 structure is very similar to both the p85 alpha N-terminal SH2 domain (N-SH2) and the Src SH2 domain with a root mean square difference (rmsd) for 44 C alpha atoms of 1.09 and 0.89 A, respectively. The canonical BC, EF and BG loops are less well-defined by the experimental restraints and show greater variability in the ensemble of C-SH2 conformers. The lower level of definition in these regions may reflect the presence of conformational disorder, an interpretation supported by the absence or broadening of backbone and side-chain NMR resonances for some of these residues. NMR experiments were performed, where C-SH2 was titrated with phosphotyrosine-containing peptides corresponding to p85 alpha recognition sites in the cytoplasmic domain of the platelet-derived growth-factor receptor. The ligand-induced chemical-shift perturbations indicate the amino-acid residues in C-SH2 involved in peptide recognition follow the pattern predicted from homologous complexes. A series of C-SH2 mutants was generated and tested for phosphotyrosine peptide binding by surface plasmon resonance. Mutation of the invariant Arg36 (beta B5) to Met completely abolishes phosphopeptide binding. Mutation of each of Ser38, Ser39 or Lys40 in the BC loop to Ala reduces the affinity of C-SH2 for a cognate phosphopeptide, as does mutation of His93 (BG5) to Asn. These effects are consistent with the involvement of the BC loop and BG loops regions in ligation of phosphopeptide ligands. Mutation of Cys57 (beta D5) in C-SH2 to Ile, the corresponding residue type in the p85 alpha N-SH2 domain, results in a change in peptide binding selectivity of C-SH2 towards that demonstrated by p85 alpha N-SH2. This pattern of p85 alpha phosphopeptide binding specificity is interpreted in terms of a model of the p85 alpha/PDGF-receptor interaction.  相似文献   

18.
Glycogen synthase kinase-3 (GSK-3) is required during metazoan development to mediate the effects of the extracellular signal wingless/Wnt-1 and hence is necessary for correct cell type specification. GSK-3 also regulates cell fate during Dictyostelium development, but in this case it appears to mediate the effects of extracellular cAMP. By direct measurement of GSK-3 kinase activity during Dictyostelium development, we find that there is a rise in activity at the initiation of multicellular development which can be induced by cAMP. The timing of the rise correlates with the requirement for the Dictyostelium homologue of GSK-3, GSKA, to specify cell fate. We show that loss of the cAMP receptor cAR3 almost completely abolishes the rise in kinase activity and causes a mis-specification of cell fate that is equivalent to that seen in a gskA- mutant. The phenotype of a cAR3(-) mutant however is less severe than loss of gskA and ultimately gives rise to an apparently wild-type fruiting body. These results indicate that in Dictyostelium extracellular cAMP acts via cAR3 to cause a rise in GSKA kinase activity which regulates cell type patterning during the initial stages of multicellularity.  相似文献   

19.
Hck and Src are members of the Src family of protein- tyrosine kinases that carry out distinct and overlapping functions in vivo (Lowell, C. A., Niwa, M., Soriano, P., and Varmus, H. E. (1996) Blood 87, 1780-1792). In an attempt to understand how Hck and Src can function both independently and in concert, we have compared 1) their in vitro substrate specificity and 2) the accessibility of their Src homology 2 (SH2) domain. Using several synthetic peptides, we have demonstrated that Hck and Src recognize similar structural features in the substrate peptides, suggesting that both kinases have the intrinsic ability to carry out overlapping cellular functions by phosphorylating similar cellular proteins in vivo. Using a phosphotyrosine-containing peptide that has previously been shown to bind the SH2 domain of Src family kinases with high affinity, we found that although Src could bind to the phosphopeptide, Hck showed no interaction. The inability of Hck to bind the phosphopeptide was not a result of a stable intramolecular interaction between its SH2 domain and C-terminal regulatory phosphotyrosine residue (Tyr-520), as most Hck molecules in the purified Hck preparation were not tyrosine-phosphorylated. In contrast to intact Hck, a recombinant truncation analog of Hck was able to bind the phosphopeptide with an affinity similar to that of the Src SH2 domain, suggesting that conformational constraints are imposed on intact Hck that limit accessibility of its SH2 domain to the phosphopeptide. Furthermore, the difference in SH2 domain accessibility is a potential mechanism that enables Src and Hck to perform their respective unique functions by 1) targeting them to different subcellular compartments, whereupon they phosphorylate different cellular proteins, and/or 2) facilitating direct binding to their cellular substrates.  相似文献   

20.
The protein tyrosine phosphatase PTP-PEST displays remarkable substrate specificity, in vitro and in vivo for p130cas a signalling intermediate implicated in mitogenic signalling, cell-adhesion induced signalling, and in transformation by a variety of oncogenes. We have identified a high affinity interaction between the SH3 domain of p130cas and a proline-rich sequence (P335PPKPPR) within the C-terminal segment of PTP-PEST. Mutation of proline 337 within this sequence to alanine significantly impairs the ability of PTP-PEST to recognise tyrosine phosphorylated p130cas as a substrate, without qualitatively affecting the selectivity of the interaction. Thus the highly specific nature of the interaction between PTP-PEST and p130cas appears to result from a combination of two distinct substrate recognition mechanisms; the catalytic domain of PTP-PEST contributes specificity to the interaction with p130cas, whereas the SH3 domain-mediated association of p130cas and PTP-PEST dramatically increases the efficiency of the interaction. Furthermore, our results indicate that one important function of the p130cas SH3 domain is to associate with PTP-PEST and thereby facilitate the dephosphorylation of p130cas, resulting in the termination of tyrosine phosphorylation-dependent signalling events downstream of p130cas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号