首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
在醇/ 水混合介质中用分散聚合方法制备二氧化硅/ 聚苯乙烯单分散复合微球。探讨了分散聚合法制备无机/ 有机复合微球的过程, 考察了分散聚合反应的动力学过程。SEM 和TEM 观察结果表明: 在醇/ 水混合介质中, 用PVP K-30 作为稳定剂, 用分散聚合法制备了单分散的以二氧化硅为核、聚苯乙烯为壳的复合微球,成功实现了聚苯乙烯对二氧化硅的包覆, 复合微球的平均粒径为1.25μm , 分散系数ε为0.035 , 达到了单分散水平。还考察了稳定剂的浓度对复合微球粒径的影响, 当稳定剂PVP K-30 浓度增加时, 发现微球的粒径有所减小, 而微球的单分散性提高。   相似文献   

2.
微米级单分散聚苯乙烯微球的制备   总被引:3,自引:1,他引:2  
用分散聚合法合成2~6μm单分散好的聚苯乙烯微球,分别考察单体、稳定剂的两步加料方式,以及初始单体浓度、引发剂用量、反应温度等对所合成的聚合物微球粒径及粒径分布的影响。结果表明:两步加料方式可以显著改善微球的单分散性;随着初始单体浓度、引发剂用量增加和反应温度的升高,最终得到的聚苯乙烯微球粒径虽有所增加,但微球粒径分布变宽。将反应液体积放大、单次合成聚苯乙烯微球量不低于250g时制备出的2~6μm系列的聚苯乙烯微球,用扫描电镜等进行表征可知,所制备的聚苯乙烯微球球形度均大于0.95,相对标准偏差均小于5%。  相似文献   

3.
提出了以苯乙烯、二乙烯基苯和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)为单体,通过伴随着溶胶-凝胶反应的悬浮聚合法一步制备表面构筑有SiO2粗糙结构的交联聚苯乙烯微球(SiO2/聚苯乙烯疏水复合微球)。研究了油相组成、KH570用量和溶胶-凝胶反应条件对SiO2/聚苯乙烯疏水复合微球强度和疏水性能的影响。结果表明,当弃除油相中的溶剂甲苯,在50℃的恒温反应阶段采用氨水调控体系pH值为10~11时可以获得兼具持久疏水性能、高强度和超低密度的SiO2/聚苯乙烯疏水复合微球。SiO2/聚苯乙烯疏水复合微球的表观密度约0.9917 g?cm?3,69 MPa的闭合压力下破碎率低至2.53%,表面静态水接触角高达140.7°,耐热性能优异(玻璃化转变和分解温度分别高达160℃和390℃)。尤其是,在涠州X油田A5井的螯合酸HD和FA中持续回流30天的过程中,SiO2/聚苯乙烯疏水复合微球表面的接触角变化仍分别保持在±10%和±7%以内。SiO2/聚苯乙烯疏水复合微球具备作为深部储层开采用支撑剂的极大潜力,也可用作封隔体控水工艺中的充填材料。   相似文献   

4.
乳液聚合制备聚苯乙烯纳米微球   总被引:3,自引:1,他引:2  
采用乳液聚合法制备了聚苯乙烯(PS)微球,对制备条件进行了研究.采用FT-IR、TEM对PS粒子的表面结构进行了表征.电镜分析表明,PS微球平均粒径约为50nm,且随乳化剂浓度的增加而减小.实验结果表明,聚合温度、乳化剂浓度等对PS微球大小和尺寸分布产生较大影响.  相似文献   

5.
以丙烯酸为分散剂、过硫酸铵为引发剂、水为分散介质进行了聚苯乙烯微球的制备,讨论了丙烯酸浓度、引发剂浓度、pH值、反应时间与温度等因素对微球制备的影响规律并确定了最佳的制备工艺参数。采用旋涂法制备聚苯乙烯微球模板,并发现其表面排布存在两种排列方式:(1)呈现面心立方〈100〉面的排列方式;(2)呈现面心立方〈111〉面的排列方式。  相似文献   

6.
简要介绍并比较了聚苯乙烯微球的各种制备方法,着重讨论了制备聚苯乙烯微球时反应体系中单体、引发剂、分散剂、反应介质等对微球粒径及粒径分布的影响。这为制备单分散性、粒径可控的聚苯乙烯微球奠定了基础。  相似文献   

7.
用分散聚合法合成4~8μm的单分散聚苯乙烯微球,实验考察反应温度对体系的黏度、微球分子量及微球密度等结构参数的影响,同时考察反应温度以及单体、引发剂和稳定剂等分散聚合的主要组分对所合成的聚合物微球粒径及粒径分布的影响。结果表明,反应温度为70℃时,制备的单分散聚苯乙烯微球结构最致密,微球产率较高,微球耐有机溶剂的能力较强;随着初始单体浓度、引发剂用量的增加和反应温度的升高,最终得到的聚苯乙烯微球粒径虽有所增大,但微球粒径分布变宽;随着稳定剂用量的增加,最终微球粒径减小,粒径分布变窄。  相似文献   

8.
以苯乙烯为原料、过硫酸钾为引发剂,采用无皂乳液聚合法成功地制备出具有良好球形度的单分散聚苯乙烯微球.研究了在聚苯乙烯微球合成过程中单体浓度、引发剂浓度、聚合时间对粒径及分布的影响.实验结果表明,适当改变单体浓度、引发剂浓度、聚合时间可以得到不同粒径的聚苯乙烯微球,且微球单分散性良好.采用自组装技术组装单分散聚苯乙烯微球,获得了二维有序聚苯乙烯胶体晶体.  相似文献   

9.
微波辐射代替传统加热方法,进行苯乙烯分散聚合,制备拉径大小在200nm-500nm之间,且为单分散的聚苯乙烯微球;探讨了单体、稳定荆、引发荆的浓度对微球粒径大小和分布的影响。研究结果表明,微波辐射分散聚合制备的聚苯乙烯微球拉径,小于常规加热分散聚合制备的微球粒径,且微波辐射制得的微球单分散性更好。  相似文献   

10.
聚苯乙烯磁性微球化学镀法制备研究   总被引:5,自引:0,他引:5  
在聚苯乙烯微球表面进行化学镀镍可以制备磁性微球,其结合了聚苯乙烯轻质的优点和镍的磁性.采用扫描电镜(SEM)表征了微球的表面形貌,研究了前处理(活化)工艺对磁性微球产率及形貌的影响.结果表明,磁性微球的产率、分散性及表面形貌均由活化效果决定;采用优化的活化工艺进行化学镀镍反应,可以得到包覆完整、形状规则的镍包覆聚苯乙烯微球,其有效密度(平均值为2.7g/cm3)明显低于传统磁性颗粒的密度(一般为7~8g/cm3);用X射线衍射分析(XRD)表征了镀层的晶体结构,发现镀层的晶体结构与单质镍十分相似,为面心立方结构.  相似文献   

11.
采用分散聚合法,以苯乙烯为单体,二苯甲烷双马来酰亚胺(BDM)为交联剂,制备了单分散交联聚苯乙烯微球(St/BDM)。研究了分散聚合反应中单体(St)、引发剂(AIBN)、分散剂(PVP)、交联剂(BDM)用量对微球粒径和粒径分布的影响。通过优化反应条件,合成了平均粒径为3.03μm(ε=0.05)的单分散交联聚苯乙烯微球。热稳定性分析和耐溶剂性实验结果表明,二苯甲烷双马来酰亚胺(BDM)交联的聚苯乙烯微球热稳定性和耐溶剂性能比线性的聚苯乙烯微球有了很大的提高。当失重5%时,聚合物的热分解温度由交联前的306℃上升到交联后的328℃。  相似文献   

12.
Polystyrene/polycarbonate (PS/PC) composite hollow microspheres were successfully prepared via microencapsulation method. Fourier-transform infrared spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry, and thermogravimetric analysis were used for the characterization of the obtained hollow microspheres. SEM images showed that there were a big cavity and some small cavities inside the composite hollow microspheres, and the hollow microspheres prepared at 42 °C presented better morphology and smaller size distribution compared with that prepared at higher temperature of solvent evaporation. The tap density of the composite hollow microspheres increased from 0.28 g cm−3 at PS/PC composite concentration of 5 wt% in oil phase to 0.42 g cm−3 at concentration of 11.7 wt%. The mean diameter of the composite hollow microspheres ranged from 13 to 528 μm. It increased with an increase in the concentration of composite in oil phase and decreased with increasing the second rotating speed. Thermal analysis showed that the composite hollow had thermal stability below 358 °C.  相似文献   

13.
以分散聚合法制备的聚苯乙烯(PS)微球作为模板,通过均相沉淀法制备前驱体PS-Gd(OH)CO_3复合微球,高温煅烧后得到Gd_2O_3空心微球,将其与丁基橡胶复合制备低频高阻尼Gd_2O_3/丁基橡胶复合材料。采用FTIR、SEM、TEM分析、TG分析仪、XRD分析和XPS对Gd_2O_3空心微球的形貌与结构组成进行表征。将Gd_2O_3空心微球与粉体分别作为填料加入丁基橡胶中制备Gd_2O_3/丁基橡胶复合材料。结果表明:Gd_2O_3空心微球由立方萤石结构的颗粒组成,外空心直径为0.9μm,壳层厚度约为100nm;添加空心微球的复合材料阻尼性能较好;与纯丁基橡胶相比,Gd_2O_3/丁基橡胶复合材料的低频阻尼性能明显提高。  相似文献   

14.
采用原位悬浮聚合法制备了聚苯乙烯/CeO2纳米复合微球。讨论了引发剂浓度、CeO2纳米粒子含量、分散剂聚乙烯醇浓度及复配分散剂等对纳米复合微球粒径及其分布的影响。结果表明,随着引发剂浓度和CeO2纳米粒子含量的增加,纳米复合微球粒径变小,粒径分布变窄;随着复配分散剂中聚甲基丙烯酸钠含量的增加,粒子粒径变小,粒径分别变窄。制得的聚苯乙烯/CeO2纳米复合微球粒径可控。  相似文献   

15.
为了提高TiO2的可见光光催化性能,以微米级聚苯乙烯微球为模板,钛酸四丁酯为前驱体,三乙胺为氮源,采用静电吸附自组装法制备了粒径为1.20μm、壳层的厚度约为30nm且球形形貌良好的氮掺杂TiO2中空复合微球,采用SEM、XPS、XRD和紫外-可见分光光度计研究了其结构及光催化性能。结果表明:氮进入TiO2晶格内取代了部分O并改变了晶格中Ti和O的化学状态,但对TiO2晶型结构没有明显影响;氮掺杂后的TiO2中空复合微球禁带宽度变窄,氮掺杂TiO2中空复合微球不仅在紫外区有较强的光吸收能力,在可见光区也表现出较强的光响应性,对甲基橙的光催化降解率较Degussa P25型纳米TiO2的明显增强。研究结果对TiO2在光催化领域的应用具有理论指导意义。  相似文献   

16.
Solid and hollow microspheres of LiMn2O4 have been synthesized by lithiating MnCO3 solid microspheres and MnO2 hollow microspheres, respectively. The LiMn2O4 solid microspheres and hollow microspheres had a similar size of about 1.5 ?m, and the shell thickness of the hollow microspheres was only 100 nm. When used as a cathode material in lithium ion batteries, the hollow microspheres exhibited better rate capability than the solid microspheres. However, the tap density of the LiMn2O4 solid microspheres (1.0 g/cm3) was about four times that of the hollow microspheres (0.27 g/cm3). The results show that controlling the particle size of LiMn2O4 is very important in terms of its practical application as a cathode material, and LiMn2O4 with moderate particle size may afford acceptable values of both rate capability and tap density.  相似文献   

17.
同轴共纺技术制备聚苯乙烯中空亚微米纤维   总被引:1,自引:0,他引:1  
利用同轴静电纺丝技术制备出壳层为聚苯乙烯(PS),芯层为聚乙烯吡咯烷酮(PVP)的壳-芯结构复合纤维,通过除去芯层PVP,成功地制备出了PS中空亚微米纤维。并对其进行了TEM、SEM测试。结果表明,纺丝过程中内、外液流速比值K直接影响着复合泰勒锥的形成及复合纤维的微观形态,且复合纤维平均直径随K值的增大而减小。  相似文献   

18.
采用分散聚合法,以乙醇、水为分散介质,苯乙烯为共聚单体,聚乙烯吡咯烷酮(PVP)为稳定剂,AIBN为引发剂,丙烯酸(AA)为功能共聚单体,制备了粒径为100—1000nm羧基化聚苯乙烯微球,研究醇水比、分散剂、引发剂用量对微球粒径及分布的影响,分析微球表面形貌、粒径分布、表面羧基含量,结果表明,胶体晶体是面心立方密排结构,微球单分散性好,表面光滑,球形度好,表面羧基含量最高可达到0.206mmol/g。同时,用垂直沉积法制备出较大范围内呈现高度有序的密排结构聚苯乙烯胶体晶体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号