首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts (x = 0–1) were prepared. The structure of the catalysts was characterized using XRD, SEM and H2-TPR. The catalytic activity of the catalysts for the combustion of methane was evaluated. The results indicated that in the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts the surface phase structure were the Ce1−xCuxO2−x solid solution, -Al2O3 and γ-Al2O3. The surface particle shape and size were different with the variety of the molar ratio of Ce to Cu in the Ce1−xCuxO2−x solid solution. The Cu component of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts played an important role to the catalytic activity for the methane combustion. There were the stronger interaction among the Ce1−xCuxO2−x solid solution and the Al2O3 washcoats and the FeCrAl support.  相似文献   

2.
Microwave dielectric properties of (Zn1/3Nb2/3)0.40(Ti1−xSnx)0.60O2 ceramics were investigated as a function of SnO2 content (0.15 ≤ x ≤ 0.30). A single phase with tetragonal rutile structure was obtained through the entire composition. The unit-cell volume of the specimens was increased with SnO2 content, due to the larger ionic radius of Sn4+ (0.69 Å) than that of Ti4+ (0.605 Å) for octahedral site. Dielectric constant (K) of the sintered specimens was affected by the dielectric polarizability. Quality factor (Qf) was dependent on the degree of reduction of Ti4+ ion. With an increase of SnO2 content, the temperature coefficient of resonant frequency (TCF) of the specimens decreased due to the decrease of the octahedral distortion of rutile structure.  相似文献   

3.
The structural and electronic properties of selected compositions of SnxTi1−xO2 solid solutions (x=0, 1/24, 1/16, 1/12, 1/8, 1/6, 1/4, 1/2, 3/4, 5/6, 7/8, 11/12, 15/16, 23/24 and 1) were investigated by means of periodic density functional theory (DFT) calculations at B3LYP level. The calculations show that the corresponding lattice parameters vary non-linearly with composition, supporting positive deviations from Vegard’s law in the SnxTi1−xO2 system. Our results also account for the fact that chemical decomposition in SnxTi1−xO2 system is dominated by composition fluctuations along [0 0 1] direction. A nearly continuous evolution of the direct band gap and the Fermi level with the growing value of x is predicted. Ti 3d states dominate the lower portion of the conduction band of SnxTi1−xO2 solid solutions. Sn substitution for Ti in TiO2 increases the oxidation–reduction potential of the oxide as well as it renders the lowest energy transition to be indirect. These two effects can be the key factors controlling the rate for the photogenerated electron–hole recombination. These theoretical results are capable to explain the enhancement of photoactivity in SnxTi1−xO2 solid solutions.  相似文献   

4.
5.
The aim of the present work is to obtain ceramic materials with a hexagonal structure and high density, hardness and mechanical strength at lower synthesis temperature. Ceramic samples with nominal composition La1−xCaxAl11−yzMgyTizO18 (x=0–1; y=0–3; z=0–3,5) are prepared. The samples are sintered at temperature 1500 °C by one-stage and two-stage ceramic technology. By X-ray diffraction and scanning electron microscopy, predominant phase LaAl11O18 and second phases LaAlO3 and -Al2O3 are identified. Ceramic materials are characterized with high physico-mechanical properties and may be find application for production of mill bodies and materials for immobilization of nuclear waste.  相似文献   

6.
The physico-chemical properties and activity of Ce-Zr mixed oxides, CeO2 and ZrO2 in CO oxidation have been studied considering both their usefulness as supports for Au nanoparticles and their contribution to the reaction. A series of Ce1−xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1) oxides has been prepared by sol–gel like method and tested in CO oxidation. Highly uniform, nanosized, Ce-Zr solid solutions were obtained. The activity of mixed oxides in CO oxidation was found to be dependent on Ce/Zr molar ratio and related to their reducibility and/or oxygen mobility. CeO2 and Ce0.75Zr0.25O2, characterized by the cubic crystalline phase show the highest activity in CO oxidation. It suggests that the presence of a cubic crystalline phase in Ce-Zr solid solution improves its catalytic activity in CO oxidation. The relation between the physico-chemical properties of the supports and the catalytic performance of Au/Ce1−xZrxO2 catalysts in CO oxidation reaction has been investigated. Gold was deposited by the direct anionic exchange (DAE) method. The role of the support in the creation of catalytic performance of supported Au nanoparticles in CO oxidation was significant. A direct correlation between activity and catalysts reducibility was observed. Ceria, which is susceptible to the reduction at the lowest temperature, in the presence of highly dispersed Au nanoparticles, appears to be responsible for the activity of the studied catalysts. CeO2-ZrO2 mixed oxides are promising supports for Au nanoparticles in CO oxidation whose activity is found to be dependent on Ce/Zr molar ratio.  相似文献   

7.
Cu2O/TiO2 nano–nano heterostructures with different concentrations of Cu2O were prepared by an alcohol-aqueous based chemical precipitation method, and were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and UV–vis diffuse reflection absorption spectra. The photocatalytic efficiency of the Cu2O/TiO2 heterostructures was evaluated by degradation of Acid Orange II in water under UV–vis light and visible light irradiation. The results show that the heterostructures have dramatically improved photocatalytic activity comparing with pure TiO2 (P25). The prepared Cu2O/TiO2 heterostructures with the Cu2O concentrations of 30% and 70% have the best photocatalytic efficiencies, which are 6 times and 27 times higher than that of pure TiO2 (P25) under UV–vis light and visible light irradiation, respectively.  相似文献   

8.
We present experimental evidence for shock-wave induced amorphization in polycrystalline and single crystal mullite, Al2VI(Al2+2x Si2−2x)IVO10−x, at peak pressures above 35 GPa. The transition proceeds along with a network of very thin glass lamellae (planar deformation features (PDFs)) of mullite-normative composition extending parallel to low-index crystallographic planes including {1 2 0}, {2 3 0} and {1 1 0}. Cumulative microstructural evidence from the PDFs derived via analytical transmission electron microscopy suggests a shear-induced formation mechanism. Experimental PDFs match the relative minima of the calculated representation surfaces of the shear modulus suggesting that suitable PDF orientations can be derived from the elastic anisotropy of mullite. PDFs in mullite are in good agreement with those reported for naturally shocked sillimanite.Unlike the formation of shear-induced PDF-type glass lamellae in shocked mullite, the thermal decomposition of mullite following high post-shock temperatures results in a fine-grained phase assemblage consisting of corundum plus amorphous silica, and represents the most abundant transformation mechanism in the shock regime investigated (20–40 GPa). No stishovite was observed. At shock levels beyond 35 GPa thermal decomposition of mullite may occur along with PDFs within the same specimen.  相似文献   

9.
Nano-sized gadolinia-doped ceria (GDC) can be used as an IT-SOFC electrolyte, oxygen gas sensor or abrasives. In this study, nano-sized GDC powders with bimodal particle distribution of about 10 nm and 200 nm particle size were successfully synthesized by aerosol flame deposition (AFD). The resulting effects of sintering temperature on microstructure and electrical properties were investigated in the sintering temperature range 1100–1400 °C. The pellet had a completely dense microstructure after sintering at 1400 °C for 10 h. Raman measurement showed an increase of oxygen vacancy due to shift between reduced and oxidized states (Ce3+ ↔ Ce4+) with increasing sintering temperature. The formation of oxygen vacancies noticeably increased the ionic conductivity above 1300 °C.  相似文献   

10.
Effect of substitution of CuO and WO3 on the microwave dielectric properties of BiNbO4 ceramics and the co-firing between ceramics and copper electrode were investigated. The (Bi1−xCux)(Nb1−xWx)O4 (x = 0.005, 0.01, 0.015, 0.02) composition can be densified between 900 and 990 °C. The microwave dielectric constants lie between 36 and 45 and the pores in ceramics were found to be the main influence. The Q values changes between 1400 and 2900 with different x values and sintering temperatures while Qf values lie between 6000 and 16,000 GHz. The microwave dielectric losses, mainly affected by the grain size, pores, and the secondary phase, are discussed. The (Bi1−xCux)(Nb1−xWx)O4 ceramics and copper electrode was co-fired under N2 atmosphere at 850 °C and the EDS analysis showed no reaction between the dielectrics and copper electrodes. This result presented the (Bi1−xCux)(Nb1−xWx)O4 dielectric materials to be good candidates for LTCC applications with copper electrode.  相似文献   

11.
MnOx–CeO2 mixed oxides prepared by sol–gel method, coprecipitation method and modified coprecipitation method were investigated for the complete oxidation of formaldehyde. Structure analysis by H2-TPR and XPS revealed that there were more Mn4+ species and richer lattice oxygen on the surface of the catalyst prepared by the modified coprecipitation method than those of the catalysts prepared by sol–gel and coprecipitation methods, resulting in much higher catalytic activity toward complete oxidation of formaldehyde. The effect of calcination temperature on the structural features and catalytic behavior of the MnOx–CeO2 mixed oxides prepared by the modified coprecipitation was further examined, and the catalyst calcined at 773 K showed 100% formaldehyde conversion at a temperature as low as 373 K. For the samples calcined below 773 K, no any diffraction peak corresponding to manganese oxides could be detected by XRD measurement due to the formation of MnOx–CeO2 solid solution. While the diffraction peaks corresponding to MnO2 phase in the samples calcined above 773 K were clearly observed, indicating the occurrence of phase segregation between MnO2 and CeO2. Accordingly, it was supposed that the strong interaction between MnOx and CeO2, which depends on the preparation route and the calcination temperature, played a crucial role in determining the catalytic activity toward the complete oxidation of formaldehyde.  相似文献   

12.
Electrical resistivity and Seebeck (S) measurements were performed on (La1−xSrx)MnO3 (0.02x0.50) and (La1−xSrx)CoO3 (0x0.15) in air up to 1073 K. (La1−xSrx)MnO3 (x0.35) showed a metal-to-semiconductor transition; the transition temperature almost linearly increased from 250 to 390 K with increasing Sr content. The semiconductor phase above the transition temperature showed negative values of S. (La1−xSrx)CoO3 (0x0.10) showed a semiconductor-to-metal transition at 500 K. Dominant carriers were holes for the samples of x0.02 above room temperature. LaCoO3 showed large negative values of S below ca. 400 K, indicative of the electron conduction in the semiconductor phase.  相似文献   

13.
Pt-Rh/CexZr1−xO2-Al2O3 with 0.6 and 1.0 wt.% noble metal loadings were prepared and characterized for their metal dispersion with respect to CexZr1−xO2-free Pt-Rh/Al2O3 in fresh, thermally aged and oxychlorinated states. Thermal ageing at 973 K led to loss of metal dispersion in all cases but to negligible effect on the dispersion of the CexZr1−xO2 component where present. Oxychlorination was able to fully recover metal dispersion in all cases but led to different effects on the redox properties of CexZr1−xO2 which appeared to be related to the metal loadings. Despite showing improved dispersion following regeneration, higher loaded catalyst showed no improvement in light-off performance for either NO reduction or CO oxidation and showed poorer oxygen storage (OSC) ability, particularly at higher temperatures. Lower loaded catalyst showed improved dispersion, improved OSC and reduced light-off temperatures for NO reduction and CO oxidation after oxychlorination compared to that in the thermally aged state.  相似文献   

14.
Kinetic studies show deactivation of TiO2 catalysts during aqueous-phase and gas-phase photooxidation of trichloroethene (TCE). Temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to examine adsorbed species on TiO2 photocatalyst surfaces after reaction, and TPD was used to determine how reactants and products adsorb on the TiO2 surface. Used and deactivated catalysts were analyzed after participating in either aqueous-phase or gas-phase photooxidation of TCE. The XPS spectra showed little difference between the surface composition of fresh TiO2 and that of a deactivated catalyst from the aqueous-phase photoreactor. Chlorine was observed only on catalysts used in the gas-phase photocatalytic decomposition of TCE. Differences due to photoreaction were observed in TPD spectra of water, carbon monoxide, and carbon dioxide. Both the total amount desorbed and the temperature of desorption of carbon monoxide and carbon dioxide were quite different for used and deactivated catalysts from the two photoreactions. Apparently strongly bound species, such as carbonates, accumulated on the surface and formed carbon monoxide upon high-temperature decomposition. Small amounts of chlorinated compounds desorbed from the used and deactivated catalysts following gas-phase photoreaction. Dichloroacetyl chloride (DCAC), a reaction intermediate, can adsorb strongly on TiO2 and readily displaces TCE. Thermally decomposed DCAC reduces the number of available adsorption sites for DCAC and TCE. An interesting low-temperature oxygen desorption peak was observed from catalysts treated with H2O2, which improves catalytic activity. This feature indicates that H2O2 is stable on TiO2 at room temperature and decomposes at 420 K.  相似文献   

15.
An extensive range of Ho-doped BaTiO3 solid solution forms in which Ho substitutes for Ti with creation of oxygen vacancies. The effect of Ho substitution is to destabilise thermodynamically the high-temperature hexagonal polymorph of BaTiO3. Nevertheless, at high Ho contents, the hexagonal polymorph forms as a kinetically stable intermediate before transforming to the thermodynamically stable cubic polymorph; its formation represents an example of Ostwald's rule of successive reactions. Samples fired at 1400 °C and cooled in air are insulating and transform from ferroelectric to relaxor ferroelectric behaviour with increasing x.  相似文献   

16.
Perovskite-type mixed oxides La1−yCeyCo1−xFexO3 with high specific surface area were prepared by reactive grinding. These catalysts were characterized by N2 adsorption, X-ray diffraction, oxygen storage capacity (OSC), H2-temperature-programmed reduction (TPR-H2), O2-, and CH3OH-temperature-programmed desorption (TPD). The catalytic performance of the samples for volatile organic compounds (VOC), CH3OH, CO and CH4 oxidation was evaluated. Cerium allows an enhancement of the reducibility of the B-site cations in perovskite structure during OSC and TPR-H2 and an increase in the amount of β-O2 desorbed during TPD-O2. As opposed to cerium, the addition of iron in the perovskite structure causes a drop in B-site cations reducibility and a decrease of the oxygen mobility in the bulk. As a consequence, the catalytic activity in VOC oxidation is enhanced by introduction of cerium and weakened by iron in the lattice.  相似文献   

17.
Structural (XRD) and spectroscopic (EPR, IR and Raman) investigations were performed to elucidate the influence of CeO2 content on the phase composition and surface chemistry of CexZr1−xO2 solid solutions (x = 0.10–0.85), interacting with NO and NO2 in the absence and presence of oxygen. Strong influence of ceria loading on the adsorption modes of both nitrogen oxides and the nature of the resultant surface species was revealed. Adsorption of NO led to formation of mononitrosyl complexes, dimers and N2O, whereas interaction of NO2 with the ceria–zirconia catalyst resulted in the adsorbate disproportionation or coupling, depending on the sample composition.  相似文献   

18.
In this work, Ca1−xHoxMnO3 (x = 0, 0.1 and 0.2) perovskite oxide pelleted electrodes were prepared from the respective powders obtained by the citrate route method at 1173 K.The electrodes exhibit particle size that decreases with the holmium content in the oxide. All the samples reveal semiconductor behaviour and the presence of holmium induces a marked decrease in the electrical resistivity. The results can be well attributed to the changes in the Mn4+/Mn3+ ratio. Electrodes were characterized by cyclic voltammetry and chronopotentiometry. Cyclic voltammetric studies indicate a similar behaviour of the electrodes, irrespective of their composition. Two pairs of peaks were identified and associated, one to the Mn4+/Mn3+ redox couple and the other to the Mn7+/Mn4+ and Mn6+/Mn4+ redox couples. The voltammetric data provide evidence that the electrodes roughness factor increases with the introduction of Ho-ions in the oxide structure, what is consistent with the crystallite size obtained by X-ray diffraction (XRD) and the morphology observed by scanning electron microscopy (SEM). The Ho-substituted electrodes present higher current density when compared with CaMnO3 electrodes what can be attributed both to higher electrical conductivity and smaller particle size. The chronopotentiometric studies have shown that the discharge occurs by different mechanisms for the oxide electrodes with and without Ho.  相似文献   

19.
Mesoporous BixTi1−xO2 spheres with core–shell chamber were prepared by alcoholysis under solvothermal conditions. The cross-condensation between Ti–OH and Bi–OH ensured complete incorporation of Bi-dopants into TiO2 lattice, though Bi atom is much bigger than Ti. Meanwhile, the aggregation of titania building clusters into spheres and their subsequent reactions including dissolution and re-deposition processes lead to the hollow spheres with tunable interior structure. The Bi-doping induced strong spectral response in visible region owing to the formation of narrow intermediate energy band gaps. Meanwhile, multiple reflections within the sphere interior voids promoted the light absorbance. As a result, the as-prepared BixTi1−xO2 spheres exhibited much higher activity than the undoped TiO2, the Bi2O3/TiO2 obtained by impregnating the TiO2 with Bi(NO3)3 solution, and the BixTi1−xO2 after being ground during photodegradation of p-chlorophenol under visible light irradiation. Meanwhile, the BixTi1−xO2 could be used repetitively for 10 times owing to the high hydrothermal stability and the absence of Bi-leaching.  相似文献   

20.
A BaTiO3 powder has been prepared by the sol-gel process from the hydrolysis of a solution of barium acetate and titanium ethylate in the presence of acetic acid as a catalyst. Supplementary constituents in the form of Ca(CH3COO)2, Zr(OC3H7)4, Sr(NO3)2 also can be used. Intermediate phases of barium acetate and barium carbonate have been identified by differential thermal analysis, X-ray diffraction, infra-red and scanning electron microscopy. BaTiO3 with perovskite structure synthesizes in the temperature range from 600 to 1000°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号