首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine has been implicated in processes of retinal light and dark adaptation. In goldfish retina, horizontal cell dendrites elaborate neurite processes (spinules) into cone terminals, in a light- and dopamine-dependent manner. However, the functions of retinal dopamine and the horizontal cell spinules in visual behavior are unknown. These issues were addressed in behavioral, electroretinographic, and anatomical studies of normal fish and those with unilateral depletion of retinal dopamine induced by intraocular (i.o.) injections with 6-hydroxydopamine (6-OHDA). Dopamine interplexiform cells (DA-IPC) disappear within 2 weeks after 6-OHDA injection; cell bodies appear at the marginal zone within 6 weeks at which time neurites slowly reinnervate the retina with a sparse plexus over the next 12 months. We found that dopamine depletion increased light sensitivity at photopic but not scotopic backgrounds by 2.5 log units, an effect mimicked by i.o. injections of dopamine D1 and D2 antagonists. The ERG b-wave increment thresholds were the same for control and dopamine depleted eyes, indicating a normal transition from rod to cone systems in the ON pathway. Light-dependent spinule formation was reduced by about 60% in dopamine-depleted retinas, but returned to normal by 3 months and 9 months after injection in the entire retina, even areas not directly innervated with DA-IPC processes. Spinule formation in vivo was inhibited 50% with i.o. injection of SCH 23390 in control retinas as well as throughout 3 month 6-OHDA injected retinas, including DA-IPC free areas. This latter result indicates a volume effect of dopamine, diffusing laterally through the retina over several millimeters, in regulating spinules. We conclude that DA-IPCs regulate sensitivity to background at photopic levels not via the ON pathway, but perhaps the OFF pathway. Goldfish display both increased sensitivity to light and a normal Purkinje shift in the ERG b-wave whether or not horizontal cell spinules are present, indicating that dopamine control of photopic vision in fish is not mediated through light-induced spinule formation of horizontal cell dendrites.  相似文献   

2.
OBJECTIVE: To review the principles and practice of the use of conscious sedation for IVF. DESIGN: The pertinent literature was reviewed and recommendations are provided. RESULT(S): Conscious sedation appears to be the most commonly used method of pain relief for transvaginal retrieval of oocytes. Conscious sedation does not require the presence of an anesthesiologist and can be done in freestanding clinics. Agents commonly used include opioids in combination with benzodiazepines. This combination minimizes pain, decreases anxiety, and provides sedation and some amnesia. Adjuvants such as promethazine and hydroxyzine can also be used but often are not needed. Conscious sedation is well tolerated by patients and does not require highly specialized equipment. However, there are specific safeguards that should be followed. Only a few toxicity studies have been performed, but they are reassuring because they have not found significant effects on fertilization or cleavage. CONCLUSION(S): Conscious sedation appears to be a safe and cost-effective method of providing analgesia and anesthesia for transvaginal retrieval of oocytes.  相似文献   

3.
In this study we investigated changes to horizontal cells in human retinae affected by glaucoma. Glaucoma is characterized by raised intraocular pressure and is responsible for retinal ganglion cell and, possibly, photoreceptor degeneration. It was therefore assumed that horizontal cells might also be affected. The carbocyanine dye DiI was placed at discrete points on fixed, whole-mounted retinae obtained from normal and glaucomatous patients. After allowing 6-24 weeks for intramembranous diffusion within the lipid layers of the nerve cells and, therefore, fluorescent labeling, we measured horizontal cell soma and dendritic field sizes. Selected cells were then embedded in Araldite and cut at 4 microns. Horizontal cells in glaucomatous eyes appeared larger and had a granulated outline as compared with cells from normal retinae. Analysis of the mean cell soma size indicated that cells were 26% larger in the glaucomatous retinae and that this increase was significantly different from that seen in normal retinae (P < 0.05). The dendritic field size was unaffected (P > 0.05). As seen in cross section there was a clear loss of photoreceptor outer segments, and shrunken silhouettes of photoreceptor inner segments with pyknotic nuclei were observed. It is proposed that the increase in some size is indicative of horizontal cell responses that are likely to culminate in degeneration as a result of heightened intraocular pressure. In addition, this paper provides further evidence that photoreceptors are affected by advanced glaucoma.  相似文献   

4.
5.
6.
We have looked at the phenotypic expression of gamma-aminobutyric acid (GABA) and the two isoforms of its synthetic enzyme [glutamic acid decarboxylase (GAD)-65 and -67] in adult rat retinas that had the superior colliculus, pretectum and optic tract lesioned unilaterally at birth. It has been shown previously that this type of manipulation induces retrograde degeneration of retinal ganglion cells presumably without affecting other intraretinal neurons. We present evidence that GABAergic amacrine cells are affected by such manipulation. The number of cells immunoreactive for GABA, GAD-65 and GAD-67 decreased in the inner nuclear layer. In the retinal ganglion cell layer, however, the number of GABA- and GAD-65-labelled cells increased, while the number of GAD-67-labelled cells did not change. Biochemical assay showed that overall GAD activity was not altered in retinas of lesioned animals. Our results support the notion that, while neonatal lesion reorganizes the expression of GABA and GAD in the retina, enzyme activity is maintained within normal levels.  相似文献   

7.
8.
Four experiments with 284 Wistar rats showed that Ss who had undergone combined dorsal noradrenergic bundle lesion (DNBL) and bilateral adrenalectomy were impaired in acquiring a conditioned avoidance response when tested 1 wk following surgery. Normal acquisition was observed, however, when testing occurred 3 wks or more after surgery, despite low levels of both plasma corticosterone and brain norepinephrine. Neither neonatal systemic administration of 6-hydroxy-dopamine to deplete forebrain norepinephrine, combined with the corticosterone inhibitor metyrapone, nor the pharmacological blockade of noradrenergic receptors, combined with adrenalectomy, disrupted acquisition of the avoidance response. Thus, the combination of forebrain norepinephrine loss and low plasma corticosterone did not inevitably impair avoidance acquisition; rather, the determining factor for such impairment was the interval between surgery and testing. The impairment at 1 wk following DNBL and adrenalectomy occurred only for Ss tested during the dark phase of their light cycle. The DNBL abolished the effect of the light–dark cycle on posttraining plasma corticosterone. Findings demonstrate the importance of the phase of diurnal rhythm on both the hormonal and the behavioral effects of altering the pituitary-adrenal axis and/or forebrain norepinephrine. (45 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
Induction of autoantibodies to serotonin and dopamine in blood serum was demonstrated in a new rat model of experimental depression-like syndrome induced by intraperitoneal injection of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg daily for 12 days). The level and frequency of detection of antibodies to serotonin within 2 and 3 weeks after MPTP withdrawal did not differ, and the level and frequency of detection of antibodies to dopamine were significantly reduced within 3 weeks as compared with 2 weeks after the MPTP withdrawal. In is suggested that disturbances in neuroimmune interactions play an important part in development of depressive states.  相似文献   

10.
Recently it was hypothesized by others that the D2 dopamine receptor can regulate the uptake of dopamine. However, the evidence in support of this hypothesis, although compelling, was not based on observations related to direct measures of the kinetic activity of the transporter itself. Here kinetic evidence in support of this hypothesis is shown. The apparent time-resolved initial velocity of the transport of 1.0 microM dopamine into striatal suspensions, measured using rotating disk electrode voltammetry, was found to increase in the presence of the D2 receptor agonist, quinpirole, at 100 nM. This effect was reversed by sulpiride. In separate studies it was shown that acute and chronic treatments with haloperidol at 0.5 mg/kg, i.p., reduced the reuptake transport of dopamine in vivo following intrastriatal stimulation of its release by K+. Thus, it appears that D2 receptors may influence the functioning of the striatal transporter for dopamine. These results are consistent with a model in which presynaptically released dopamine may feed back onto the function of its transporter to increase the velocity of the clearance of synaptic dopamine following an action potential, suggesting the existence of a mechanism, in addition to release and synthesis modulation, for fine-tuning dopaminergic chemical signaling.  相似文献   

11.
Isotonic suspensions of human erythrocytes were exposed to single electric pulses of intensity at a few kV/cm and duration in microseconds. Upon pulsation, the cell membranes became permeable to Na+ and K+, and the erythrocytes eventually hemolysed through the colloid osmotic effect of hemoglobin. The enhanced permeability is attributed to the formation of pores in the cell membranes. These pores are formed within a fraction of a microsecond, once the transmembrane potential induced by the applied electric field reaches a critical value of 1.0 V. Increased field intensity and pulse duration, or pulsation at low ionic strengths all expand the pore size, leading to an accelerated hemolysis reaction. In contrast to this expansion process, the initial step of pore formatin is governed solely by the magnitude of the transmembrane potential: the critical value of the potential stays essentially constant in media of different ionic strengths, nor does it change appreciably with varying pulse duration. An abrupt increase in membrane permeability at a transmembrane potential adround 1 V has been observed in many cellular systems. It is suggested that a similar mechanism of pore formation may apply to these systems as well.  相似文献   

12.
Crystals of the lipophilic tracer DiI were applied to discrete regions of the olfactory epithelium of goldfish to trace the primary sensory projection to the olfactory bulb. Receptors from the anterior half of the sensory sheet project primarily to glomeruli in the medial half of the bulb and receptors in the posterior half terminate mainly within the lateral half of the bulb. This pattern disappeared following ablation of selected, discrete epithelial regions. In order to investigate reorganization of secondary olfactory projections, unoperated control and unilaterally bulbectomized animals received injections of [3H]proline into the right olfactory bulb. Densities of silver grains per unit area were determined within six different forebrain nuclei in both the right and left hemispheres of each animal. Of the six areas examined, three demonstrated a significantly greater density of afferent innervation from the ipsilateral versus contralateral bulb; a difference which disappeared in two of these three regions after bulbectomy. Thus, for at least two forebrain nuclei, bulb removal caused a change in the afferent input from the spared olfactory bulb to those regions. We conclude that both primary and secondary olfactory projections in goldfish are capable of some degree of reorganization following insult.  相似文献   

13.
Application of gamma-aminobutyric acid (GABA) slows down the horizontal cell response time course (HCRRT) and induces membrane depolarization in horizontal cells (HCs) after synaptic inputs are blocked by Co2+. We present evidence that suggests both effects are probably mediated by GABAA receptors which open chloride channels in the HC membrane. In any given concentration of GABA, ranged from 0 to 100 microM, the HC membrane potential (VHC) in saturating light and in the presence of 100 microM Co2+ are identical. This result suggests that GABA in both light and 100 microM Co2+ opens the same amount of chloride channels (same gCl) so that VHC determined by chloride and leak conductances has the same value. Higher concentrations of Co2+ (> 300 microM) not only blocks synaptic transmission from photoreceptors to HCs, but also acts as an antagonist that suppresses the GABA-mediated depolarization in HCs.  相似文献   

14.
Central dopamine systems appear to play an important role in sensory information processing. In particular, the filtering (or gating) of repetitive auditory stimuli is modulated by pharmacological manipulations that affect dopaminergic neurotransmission. The present study further addressed the role of dopamine in auditory gating. Three-day-old male Sprague-Dawley rats, pretreated with desipramine, received intracisternal injections of 6-hydroxydopamine (6-OHDA; 75 micrograms in 10 microliters) or the vehicle. At 4 months of age the rats were implanted for evoked potential recording and auditory gating was assessed using a paired click paradigm. Neonatally administered 6-OHDA did not alter gating in the adult rats. However, unlike for the control group, systemic amphetamine (1.83 mg/kg, IP) failed to disrupt gating in the treated rats. Apomorphine (1.0 mg/kg, SC) disrupted gating in both groups. Neonatal 6-OHDA treatment caused significant reductions in dopamine levels in the striatum, nucleus accumbens, and substantia nigra/ventral tegmental regions. There was an inverse relationship between substantia nigra/ ventral tegmental area dopamine levels and auditory gating. Overall, the results suggest that amphetamine-induced auditory gating loss requires presynaptic dopamine release, but that the deficiency occurs through postsynaptic dopamine receptor activation.  相似文献   

15.
The dopamine transporter (DAT) plays an important role in calibrating the duration and intensity of dopamine neurotransmission in the central nervous system. We have used a strain of mice in which the gene for the DAT has been genetically deleted to identify the DAT's homeostatic role. We find that removal of the DAT dramatically prolongs the lifetime (300 times) of extracellular dopamine. Within the time frame of neurotransmission, no other processes besides diffusion can compensate for the lack of the DAT, and the absence of the DAT produces extensive adaptive changes to control dopamine neurotransmission. Despite the absence of a clearance mechanism, dopamine extracellular levels were only 5 times greater than control animals due to a 95% reduction in content and a 75% reduction in release. Paradoxically, dopamine synthesis rates are doubled despite a decrease of 90% in the levels of tyrosine hydroxylase and degradation is markedly enhanced. Thus, the DAT not only controls the duration of extracellular dopamine signals but also plays a critical role in regulating presynaptic dopamine homeostasis. It is interesting to consider that the switch to a dopamine-deficient, but functionally hyperactive, mode of neurotransmission observed in mice lacking the DAT may represent an extreme example of neuronal plasticity resulting from long-term psychostimulant abuse.  相似文献   

16.
The intensity of the immunohistochemical reaction (IIR) against the alpha species of protein kinase C (PKC) was quantified in the rod bipolar cells (RBC) of the goldfish retina using of image analysis. Retinae incubated in control Ringer solution showed similar IIR in both the soma and the axon terminal (IIR-ratio approximately 1). Activation of PKC induces the 'transport' of the enzyme to the synaptic terminal of RBC and an increase in the IIR-ratio. In the present report, the effect of retinal neurotransmitters on the IIR-ratio and the time course of PKC transport was studied.  相似文献   

17.
The changes in the extracellular concentrations of rat striatal H2O2, dopamine (DA) and its metabolites during middle cerebral artery (MCA) occlusion and reperfusion were simultaneously examined by microdialysis, and the relationship between the ischemia-induced release of DA and the generation of H2O2 was estimated by assessing the effect of the lesion of the substantia nigra (SN). In the rats without SN lesions, a significant increase in the striatal H2O2 level was observed during the ischemia and reperfusion phases. In the rats with SN lesions, the ischemia-induced H2O2 production was not attenuated. These results suggest that DA is not an important source of H2O2 in cerebral ischemia and reperfusion.  相似文献   

18.
The major symptoms of Parkinson disease (PD) are tremors, hypokinesia, rigidity, and abnormal posture, caused by the degeneration of dopamine (DA) neurons in the substantia nigra (SN) and deficiency of DA in the neostriatal DA terminals. Norepinephrine (NE) and serotonin (5-HT) levels in the neostriatum and tyrosine hydroxylase and melanin pigments in the substantia nigra are also decreased, and brain cholinergic activity is increased. The cause of PD is unknown, but PD is an age-related disorder, suggesting that changes that occur during the aging process may help to precipitate PD. Methylation increases in aging animals. Increased methylation can deplete DA, NE, and 5-HT; increase acetylcholine; and cause hypokinesia and tremors. These effects are similar to changes seen in PD, and interestingly also, they are similar to some of the changes that are associated with the aging process. It is suggested, therefore, that increased methylation may be an inducing factor in parkinsonism. Accordingly, the effects of an increase in methylation in the brain of rats were studied. S-adenosylmethionine (AdoMet), the limiting factor in the methylation process, was injected into the lateral ventricle of rats. Specific behavioral changes that resemble changes seen in PD were investigated. The results showed that AdoMet caused tremors, rigidity, hypokinesia, and depleted DA. The hypokinetic effects of a single dose of AdoMet lasted for about 90 min. AdoMet has a dose-dependent hypokinetic effect. A dose of 9.4 nmol reduced movement time (MT) by 68.9% and increased rest time (RT) by 20.7%, and a dose of 400 nmol reduced MT by 92.4% and increased RT by 27.6%. The normethyl analog of AdoMet, S-adenosylhomocysteine, did not cause hypokinesia or tremors, but it blocked the AdoMet-induced motor effects. L-dopa, the precursor of DA, also blocked the AdoMet-induced motor effects. These data suggest that the methyl group of AdoMet as well as DA depletion are involved in the AdoMet-induced motor effects. A dose of 0.65 mumol of AdoMet depleted DA in the ipsilateral caudate nucleus (CN) or neostriatum by 50.1%, and DA in the contralateral CN was reduced by 9.3%. Double the dose of AdoMet did not increase the depletion of DA on the ipsilateral CN, but DA in the contralateral CN was decreased by 26.3%. Taken together, the results suggest that increased methylation may contribute to the symptoms of PD.  相似文献   

19.
20.
Properties of glutamatergic synaptic transmission were investigated by simultaneously voltage-clamping a pair of connected bipolar cells and cells in the ganglion cell layer (GLCs) in the newt retinal slice preparation. Activation of the Ca2+ current in a single bipolar cell was essential for evoking the glutamatergic postsynaptic current in the GLC. Depolarization for as short as 15 msec activated both NMDA and non-NMDA receptors. On the other hand, analysis of the spontaneous glutamatergic synaptic currents of GLCs revealed that these currents consisted of mainly non-NMDA receptor activation with little contribution from NMDA receptors. This suggests that non-NMDA receptors of GLCs are clustered in postsynaptic membrane regions immediately beneath the release sites of bipolar cells and that NMDA receptors have lower accessibility to the released transmitter than non-NMDA receptors. Glutamate that is spilled over from the release sites may activate the NMDA receptors. When a prolonged depolarizing pulse was applied to a bipolar cell, the response induced by non-NMDA receptors was limited greatly by their fast desensitization, whereas NMDA receptors were able to produce a maintained response. The relationship between the pulse duration applied to the bipolar cell and the integrated charge of the response evoked in the GLC was almost linear. Therefore, we propose that both non-NMDA and NMDA receptors cooperate to transfer the graded photoresponses of bipolar cells proportionally to GLCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号