首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of certain major histocompatibility complex (MHC) class I ligands on target cells is one important determinate of their susceptibility to lysis by natural killer (NK) cells. NK cells express receptor molecules that bind to MHC class I. Upon binding to their MHC class I ligand, the NK cell is presumed to receive a signal through its receptor that inhibits lysis. It is unclear what role the MHC class I molecules of the effector and target cells play in signaling to the NK cell. We have investigated the role of the cytoplasmic and transmembrane domains of MHC class I molecules by producing a glycosylphosphatidylinositol (GPI)-linked H-2Dd molecule. The GPI-linked H-2Dd molecule is recognized by H-2Dd-specific antibodies and cytotoxic T lymphocytes. Expression of the GPI-linked H-2Dd molecule on H-2b tumor cells resulted in protection of the tumor cells after transplantation into D8 mice (H-2b, H-2Dd) from rejection by NK cells. In addition, NK cells from mice expressing the GPI-linked H-2Dd molecule as a transgene were able to kill nontransgenic H-2b lymphoblast target cells. The GPI-linked MHC class I molecule was able to alter NK cell specificity at the target and effector cell levels. Thus, the expression of the cytoplasmic and transmembrane domains of MHC class I molecules are not necessary for protection and alteration of NK cell specificity.  相似文献   

2.
Classical class I major histocompatibility complex (MHC) molecules, as well as the nonclassical class I histocompatibility leukocyte antigen (HLA)-E molecule, can negatively regulate natural killer (NK) cell cytotoxicity through engagement of NK inhibitory receptors. We show that expression of murine (m)CD1.1, a nonpolymorphic nonclassical MHC class I-like molecule encoded outside the MHC, protects NK-sensitive RMA/S target cells from adherent lymphokine-activated killer cell (A-LAK) cytotoxicity. Passage of effector cells in recombinant interleukin (rIL)-2 enhanced protection by mCD1.1, suggesting an expansion of relevant A-LAK population(s) or modulation of A-LAK receptor expression. Murine CD1. 1 conferred protection from lysis by rIL-2-activated spleen cells of recombination activating gene (Rag)-1(-/-) mice, which lack B and T cells, demonstrating that mCD1.1 can protect RMA/S cells from lysis by NK cells. An antibody specific for mCD1.1 partially restored A-LAK lysis of RMA/S.CD1.1 transfectants, indicating that cell surface mCD1.1 can confer protection from lysis; therefore, mCD1.1 possibly acts through interaction with an NK inhibitory receptor. CD1.1 is by far the most divergent class I molecule capable of regulating NK cell activity. Finally, mCD1.1 expression rendered RMA/S cells resistant to lysis by A-LAK of multiple mouse strains. The conserved structure of mCD1.1 and pattern of mCD1.1 resistance from A-LAK lysis suggest that mCD1.1 may be a ligand for a conserved NK inhibitory receptor.  相似文献   

3.
4.
We have previously described a form of xenograft rejection, mediated by natural killer (NK) cells, occurring in pig-to-primate organ transplants beyond the period of antibody-mediated hyperacute rejection. In this study, two distinct NK activation pathways were identified as mechanisms of pig aortic endotheliual cell (PAEC) lysis by human NK cells. Using an antibody-dependent cellular cytotoxicity (ADCC) assay, a progressive increase in human NK lysis of PAEC was observed following incubation with human IgG at increasing serum titer. In the absence of IgG, a second mechanism of PAEC lysis by human NK cells was observed following activation with IL-2. IL-2 activation of human NK cells increased lysis of PAEC by over 3-fold compared with ADCC. These results indicate that IL-2 activation of human NK cells induces significantly higher levels of lytic activity than does conventional ADCC involving IgG and FcRIII. We next investigated the role of MHC class I molecules in the regulation of NK lysis following IL-2 activation. PAEC expression of SLA class I molecules was increased by up to 75% by treatment with human TNFa. Following treatment with TNFa at 1 u/ml, IL-2 activated human NK lysis of PAEC was inhibited at every effector:target (E:T) ratio tested. Maximal effect occurred at an E:T ratio of 10:1, with TNFa inhibiting specific lysis by 59% (p < 0.01). Incubation with an anti-SLA class I Mab, but not IgG isotype control, abrogated the protective effects of TNFa on NK lysis of PAEC, suggesting direct inhibitory effects of SLA class I molecules on human NK function. To investigate whether human MHC class I molecules might have similar effects on human NK lysis of PAEC, further experiments were performed using a soluble peptide derived from the alpha-helical region of HLA-B7. Incubation with the HLA-B7 derived peptide significantly reduced the IL-2 activated NK lytic activity against PAEC in a dose-dependent fashion. Maximal effect occurred at a concentration of 10 mg/ml, where an 8-fold reduction in IL-2 augmented NK lysis was observed (p < 0.01). These results suggest that IL-2 activated human NK lysis of porcine xenografts may be inhibited by strategies which increase PAEC expression of SLA class I molecules, introduce HLA class I genes into PAEC, or use soluble HLA class I peptides.  相似文献   

5.
Natural killer (NK) cells have been implicated in early immune responses against certain viruses, including cytomegalovirus (CMV). CMV causes downregulation of class I major histocompatibility complex (MHC) expression in infected cells; however, it has been proposed that a class I MHC homolog encoded by CMV, UL18, may act as a surrogate ligand to prevent NK cell lysis of CMV-infected cells. In this study, we examined the role of UL18 in NK cell recognition and lysis using fibroblasts infected with either wild-type or UL18 knockout CMV virus, and by using cell lines transfected with the UL18 gene. In both systems, the expression of UL18 resulted in the enhanced killing of target cells. We also show that the enhanced killing is due to both UL18-dependent and -independent mechanisms, and that the killer cell inhibitory receptors (KIRs) and CD94/NKG2A inhibitory receptors for MHC class I do not play a role in affecting susceptibility of CMV-infected fibroblasts to NK cell-mediated cytotoxicity.  相似文献   

6.
Natural killer (NK) cells preferentially lyse targets that express reduced levels of major histocompatibility complex (MHC) class I proteins. To date, the only known mouse NK receptors for MHC class I belong to the Ly49 family of C-type lectin homodimers. Here, we report the cloning of mouse NKG2A, and demonstrate it forms an additional and distinct class I receptor, a CD94/NKG2A heterodimer. Using soluble tetramers of the nonclassical class I molecule Qa-1(b), we provide direct evidence that CD94/NKG2A recognizes Qa-1(b). We further demonstrate that NK recognition of Qa-1(b) results in the inhibition of target cell lysis. Inhibition appears to depend on the presence of Qdm, a Qa-1(b)-binding peptide derived from the signal sequences of some classical class I molecules. Mouse NKG2A maps adjacent to CD94 in the heart of the NK complex on mouse chromosome six, one of a small cluster of NKG2-like genes. Our findings suggest that mouse NK cells, like their human counterparts, use multiple mechanisms to survey class I expression on target cells.  相似文献   

7.
Antigenic peptides are thought to bind to class I major histocompatibility complex (MHC) molecules through three modes of interaction: van der Waals interaction and, to a lesser extent, hydrogen bonding of anchor side chain atoms to residues comprising the binding pockets of the MHC molecule; hydrogen bonding of N- and C-termini to residues at the ends of the binding groove; and hydrogen bonding of peptide backbone atoms to residues lining the binding groove. To dissect the relative contribution of each of these interactions to class I MHC-peptide stability, a retro inverso (RI) analog of VSV-8. an H-2Kb restricted cytotoxic T lymphocyte (CTL) epitope and terminally modified variants of both VSV-8 and RI VSV-8 were synthesized and their ability to target H-2Kb bearing cells for CTL mediated lysis was compared. None of RI VSV-8 analogs elicited lysis of target cells by CTL specific for VSV-8 nor did they appear to compete with the native peptide for binding to H-2Kb. In contrast, terminally modified VSV-8 peptides elicited target lysis. These findings suggest that side chain topochemistry of the peptide is insufficient for stable peptide binding to H-2Kb; rather, hydrogen bonding of the peptide backbone atoms to H-2Kb side chain atoms appears to play a major role in the stability of the complex. Computer modeling confirmed that none of the RI analogs participate in the extensive hydrogen bonding network between the peptide backbone and the MHC molecule seen in the native structure.  相似文献   

8.
Although activation of natural killer (NK) cytotoxicity is generally inhibited by target major histocompatibility complex (MHC) class I expression, subtle features of NK allorecognition suggest that NK cells possess receptors that are activated by target MHC I. The mouse Ly-49D receptor has been shown to activate NK cytotoxicity, although recognition of MHC class I has not been demonstrated previously. To define Ly-49D-ligand interactions, we transfected the mouse Ly-49D receptor into the rat NK line, RNK-16 (RNK.mLy-49D). As expected, anti- Ly-49D monoclonal antibody 12A8 specifically stimulated redirected lysis of the Fc receptor- bearing rat target YB2/0 by RNK.mLy-49D transfectants. RNK.mLy-49D effectors were tested against YB2/0 targets transfected with the mouse MHC I alleles H-2Dd, Db, Kk, or Kb. RNK.mLy-49D cells lysed YB2/0.Dd targets more efficiently than untransfected YB2/0 or YB2/0 transfected with Db, Kk, or Kb. This augmented lysis of H-2Dd targets was specifically inhibited by F(ab')2 anti-Ly-49D (12A8) and F(ab')2 anti-H-2Dd (34-5-8S). RNK.mLy-49D effectors were also able to specifically lyse Concanavalin A blasts isolated from H-2(d) mice (BALB/c, B10.D2, and DBA/2) but not from H-2(b) or H-2(k) mice. These experiments show that the activating receptor Ly-49D specifically interacts with the MHC I antigen, H-2Dd, demonstrating the existence of alloactivating receptors on murine NK cells.  相似文献   

9.
We have investigated the capacity of human MHC class I HLA-B gene products, HLA-B27, -B7 (fully human), and -B7kb (human-mouse hybrid consisting of the alpha1 and alpha2 domains of HLA-B7, and the alpha3 and cytoplasmic domains of mouse H-2Kb), expressed on mouse NK cells during ontogeny to influence NK recognition of otherwise syngeneic mouse target cells. Despite a high level of surface expression of the transgene (comparable to that of endogeneous H-2DbKb molecules), the direct killing of YAC-1 targets, and the killing of P815 targets in a redirected lysis assay, the NK effectors of these transgenic mice could not mediate hybrid resistance-like killing of nontransgenic C57BL/6 target cells either in vitro or in vivo. Splenocytes from B6-B27 mice could be used to generate CTL lines against a B27-binding peptide, implying that T cells restricted by HLA-B27 developed during ontogeny. NK cells from B6-B27 could lyse B6-B27 Con A lymphoblasts pulsed with Db-binding peptide but not B27-binding peptides. Taken together, our results show that these human HLA-B transgene products cannot function as class I MHC "self" elements for mouse NK cells, even when present throughout ontogeny.  相似文献   

10.
The recognition of class I MHC molecules on target cells by the Ly-49 family of receptors regulates NK cytotoxicity. Previous studies have suggested that carbohydrates are involved in the recognition of class I MHC by Ly-49, although their precise role remains unclear. Here, we examined the role of asparagine-linked carbohydrates of the murine class I MHC in the binding to Ly-49A and Ly-49C. We have generated H-2Dd mutants that lack the highly conserved glycosylation sites at amino acid residues 86 in the alpha1 domain and 176 in the alpha2 domain, respectively. These mutant Dd cDNAs were transfected into leukemic cell lines, and the binding of the transfected cells to COS cells expressing Ly-49A or Ly-49C, as well as their susceptibility to lysis by Ly-49A+ NK cells, was examined. Only the mutation of the alpha2 domain glycosylation site significantly reduced the binding of Dd to Ly-49A and Ly-49C. Cells expressing Dd with the mutation at this site were partially resistant to killing by Ly-49A+ NK cells. These results suggest that, while carbohydrates linked to residue 176 seem to function as a part of the ligand structure for the Ly-49 family of NK receptors, there are additional structural features involved in this recognition. This glycosylation site is highly conserved among murine class I MHC but is not found among those of other species, suggesting that its role is unique to the murine immune system. It further suggests that murine class I MHC and Ly-49 gene families may have evolved in concert.  相似文献   

11.
The potential of natural killer (NK) cells to contribute to renal allograft rejection was modelled by mixing NK cells with cultured renal epithelial cells. It was found that the renal cells were readily lysed by cytokine-activated NK cells. Renal cells which were previously stimulated by culture with either interferon-gamma (IFN-gamma) or supernatant from mixed leucocyte cultures (MLC) were relatively resistant to such lysis; stimulation with tumour necrosis factor-alpha (TNF-alpha) had no effect. None of these cytokine preparations had any effect on the lysis of renal cells by either specific cytotoxic T lymphocytes or the antibody-dependent cell-mediated cytotoxic mechanism. The expression of class I major histocompatibility complex (MHC) antigens was up-regulated by stimulation of renal cells with either IFN-gamma or MLC supernatant; treatment with TNF-alpha had no effect on the expression of these antigens. Protection from NK cell-mediated lysis appeared to correlate with the expression of class I MHC antigens by the renal cells. Artificial removal of these MHC antigens by treatment with citric acid significantly increased the susceptibility of cytokine-stimulated renal cells to lysis by activated NK cells. This increase was not caused by enhanced binding of NK cells to acid-treated renal cell targets. These results suggest that high levels of class I MHC antigen expression block NK cell triggering after engagement with renal epithelial cells. It is concluded that cytokines present within the renal microenvironment during rejection protect graft cells from lysis by NK cells by causing local upregulation of the expression of class I MHC molecules.  相似文献   

12.
NK cells selectively lyse tumor cells which do not express one or more MHC class I alleles. The ability to discriminate between self normal or tumor cells is due to the expression of MHC class I-specific killer inhibitory receptors (KIR). In the present study we analyzed melanoma cell lines which were highly susceptible to NK cell-mediated lysis in spite of the expression of a complete set of HLA class I alleles. Quantitative analysis of the HLA class I expression using allele-specific monoclonal antibodies (mAb) revealed a down-regulation of all HLA class I molecules. Treatment of melanoma cells with IFN-gamma resulted in up-regulation of all HLA class I alleles that was paralleled by the acquisition of resistance to lysis. That resistance to lysis reflected the up-regulation of HLA class I molecules was revealed by the finding that mAb-mediated masking of either KIR or their HLA class I ligands completely restored the melanoma cell lysis. These results were obtained by the use of selected NK cell clones derived either from allogeneic or autologous donors. In addition, similar results were obtained using in vitro expanded autologous NK cell populations. Our data indicate that NK cells can lyse not only melanoma cells which have lost the expression of one or more HLA class I alleles but also cells expressing a decreased amount of class I molecules.  相似文献   

13.
Cytotoxic T lymphocyte (CTL) activation requires specific T cell receptor (TCR)-class I major histocompatibility complex (MHC) antigen complex interactions as well as the participation of coreceptor or accessory molecules on the surface of CTL. CD8 can serve as a coreceptor in that it binds to the same MHC class I molecules as the TCR to facilitate efficient TCR signaling. In addition, CD8 can be "activated" by TCR stimulation to bind to class I molecules with high avidity, including class I not recognized by the TCR as antigenic complexes (non-antigen [Ag] class I), to augment CTL responses and thus serve an accessory molecule function. A Glu/Asp227-->Lys substitution in the class I alpha 3 domain acidic loop abrogates lysis of target cells expressing these mutant molecules by alloreactive CD8-dependent CTL. Lack of response is attributed to the destruction of the CD8 binding site in the alpha 3 domain which is likely to disrupt CD8 coreceptor function. The relative importance of the class I alpha 3 domain acidic loop Glu227 in coreceptor as opposed to accessory functions of CD8 is unclear. To address this issue, we examined CTL adhesion and degranulation in response to immobilized class I-peptide complexes formed in vitro from antigenic peptides and purified class I molecules containing wild-type or Glu227-->Lys substituted alpha 3 domains. The alpha 3 domain mutant class I-peptide complexes were bound by CTL and triggered degranulation, however to much lower levels than wild-type class I-peptide complexes. In further experiments, it is directly demonstrated that the alpha 3 domain mutant class I molecules, which lack the Glu227 CD8 binding site, still serve as TCR-activated, avidity-enhanced CD8 accessory ligands. However, mutant class I peptide Ag complexes failed to effectively serve as CD8 coreceptor ligands to initiate TCR-dependent signals required to induce avidity-enhanced CD8 binding to coimmobilized non-Ag class I molecules. Thus the Glu227-->Lys mutation effectively distinguishes CD8 coreceptor and avidity-enhanced CD8 accessory functions.  相似文献   

14.
We previously showed that the availability of a nonamer peptide derived from certain HLA class I signal sequences is a necessary requirement for the stabilization of endogenous HLA-E expression on the surface of 721.221 cells. This led us to examine the ability of HLA-E to protect HLA class I transfectants from natural killer (NK) cell-mediated lysis. It was possible to implicate the CD94/NKG2A complex as an inhibitory receptor recognizing this class Ib molecule by using as target a .221 transfectant selectively expressing surface HLA-E. HLA-E had no apparent inhibitory effect mediated through the identified Ig superfamily (Ig-SF) human killer cell inhibitory receptors or ILT2/LIR1. Further studies of CD94/NKG2+ NK cell-mediated recognition of .221 cells transfected with different HLA class I allotypes (i.e., -Cw4, -Cw3, -B7) confirmed that the inhibitory interaction was mediated by CD94/NKG2A recognizing the surface HLA-E molecule, because only antibodies directed against either HLA-E, CD94, or CD94/NKG2A specifically restored lysis. Surface stabilization of HLA-E in cold-treated .221 cells loaded with appropriate peptides was sufficient to confer protection, resulting from recognition of the HLA class Ib molecule by the CD94/NKG2A inhibitory receptor. Consistent with the prediction that the ligand for CD94/NKG2A is expressed ubiquitously, our examination of HLA-E antigen distribution indicated that it is detectable on the surface of a wide variety of cell types.  相似文献   

15.
Recent studies on human NK cells have demonstrated that the NK cell CD94/NKG2 receptors bind to the nonclassical MHC class I molecule HLA-E. A functional CD94/NKG2 complex has not yet been identified in rodents, but cDNA encoding rat and mouse CD94 and NKG2 have recently been cloned, suggesting that CD94/NKG2 receptors may exist in species other than man. The mouse nonclassical MHC class I molecule Qa-1 shares several features with HLA-E. This suggests that Qa-1 may be similarly recognized by murine NK cells. To study the ability of Qa-1 to bind to murine NK cells, we have produced a soluble tetrameric form of Qa-1b. In the present study, we demonstrate that Qa-1b tetramers distinctly bind to a large subset of fresh or IL-2-activated NK1.1+/CD3- splenocytes independently of the expression of Ly49 inhibitory receptors. Binding occurs whether NK cells have evolved in an MHC class I-expressing or in an MHC class I-deficient environment. Our data suggest the existence of a Qa-1-recognizing structure on a large subpopulation of murine NK cells that may be similar to the human CD94/NKG2 heterodimeric complex.  相似文献   

16.
The assembly assay for peptide binding to class I major histocompatibility complex (MHC) is based on the ability to stabilise MHC class I molecules from mutant cell lines by the addition of suitable peptides. Such cell lines lack a functional transporter associated with antigen presentation (TAP) and as a result accumulate empty, unstable class I molecules in the ER. These dissociate rapidly in cell lysates unless they are stabilised by the addition of an appropriate binding peptide during lysis. The extent of stabilisation of class I molecules is directly related to the binding affinity of the added peptide. However, some MHC class I molecules, including HLA-B * 2705 and H-2Kk are unusually stable in their peptide-receptive state making them inappropriate for analysis using this assay or assays which depend on the ability of peptides to stabilise MHC class I molecules at the cell surface. Here we present an improved method that permits reliable measurements of peptide binding to such class I MHC molecules that are unusually stable in the absence of peptide. Cells are lysed in the presence of peptide and incubated at 4 degrees C. After 2 h, during which peptide binding to empty MHC molecules occurs, the lysate is heated to a temperature which preferentially destabilises those MHC molecules that remain empty. We have used this technique to assay peptide binding to HLA-B * 2705, as well as to the murine allele H-2Kk which also displays a stable phenotype when transfected into TAP-deficient T2 cells and show that this method represents a marked improvement over previous methods in terms of lower background signal and higher recovery of peptide bound molecules.  相似文献   

17.
The MHC class I molecule H-2Dd (Dd) acts as a ligand for the inhibitory NK cell receptor Ly-49A. We have constructed altered Dd molecules by site-directed mutagenesis, replacing residues with the corresponding amino acids from the Db molecule, which fails to inhibit via Ly-49A. Mutations at positions 73 and 156 (DdS73WD156Y) impaired the protective effect of the Dd molecule, as evaluated by testing lymphoma cells transfected with the mutant gene for sensitivity to killing by Ly-49A+ NK cells in vitro and rejection by NK cells in vivo. The altered residues form a hydrophobic ridge across the floor of the antigen binding cleft. A mutation in the alpha helix of the alpha2 domain, facing the solvent and without direct contact with the peptide (DdA150S) had no effect. Dd recognition by Ly-49A+ NK cells is considered to be peptide dependent, but not peptide specific. Our results indicate that alterations of residues buried in the antigen binding cleft can induce changes in peptide binding patterns and/or conformational changes in the Dd molecule that make the trimolecular complex less permissive for inhibition of Ly-49A+ NK cells.  相似文献   

18.
Natural killer (NK) cells are well recognized as cytolytic effector cells of the innate immune system. In the past several years, the structure and function of NK cell receptors for the major histocompatibility complex (MHC) class I molecules and other ligands have been the subject of extensive studies. These studies. These studies have focused largely on the mechanisms of target cell recognition for lysis. Another aspect of NK cell function that seems to be underappreciated is their role in immune regulation. Since NK cells produce a number of immunologically relevant cytokines, it has been suggested that these cells may modulate the development of the adaptive immune response. But, is it the only mechanism by which NK cells interact with cells involved in the induction of antigen-specific responses? This article reviews some older and more recent studies and attempts to place NK cells in the context of potent immune regulators of T cell responses.  相似文献   

19.
Cytomegalovirus (CMV) infection has been associated with graft rejection in solid organ transplantation and with graft-versus-host disease in marrow transplantation. We hypothesized that CMV-infected endothelial cells play an important role in the rejection process, because of their strategic localization at the interface with the host immune system and their ability to modulate T cell function. To study the effect of CMV infection on cell-mediated cytotoxicity against endothelial cells, peripheral blood mononuclear cells (MNC) were incubated with CMV-infected umbilical vein endothelial cells (CMV-UVEC) or mock-infected controls (M-UVEC) and lysis measured by [3H]leucine release. MNC lysed only CMV-UVEC to a maximum of 23% at E:T 20:1. Lysis was not affected by CD3+ cell depletion, but was abolished by CD16+ cell depletion, indicating that NK cells were the effectors. The kinetics of the NK-mediated lysis of CMV-UVEC paralleled the time course of CMV antigen expression. Furthermore, ganciclovir treatment of CMV-UVEC cultures decreased both specific antigen synthesis and NK-mediated lysis. This indicated that NK might recognize either a viral antigen or a cellular antigen modulated by CMV infection. Treatment of CMV-UVEC with F(ab)2 fragments of human polyclonal anti-CMV antibodies failed to inhibit NK cytotoxicity. In contrast, F(ab)2 fragments of MB40.5, a murine MAb reactive with a conserved epitope on the human MHC class I, significantly decreased lysis, proving that NK lysis of CMV-UVEC is an MHC class I-dependent function. To determine whether CMV-UVEC lysis was dependent solely on upregulation of MHC class I, MNC were incubated with CMV-UVEC mixed with uninfected UVEC. There was no competition for NK-target recognition sites, indicating that NK lysis required an interaction with an MHC class I antigen modified by viral infection. Antibodies against IFN-alpha or -beta did not block NK cytotoxicity against CMV-UVEC. Our findings provide a working frame for further evaluation of cellular immune responses to CMV infection.  相似文献   

20.
Introduction of the MHC class I transgene H-2Dd on C57BL/6 (B6) background conveys NK cell-mediated "missing self" reactivity against transgene-negative cells, and down-regulates expression of the inhibitory receptors Ly49A and Ly49G2 in NK cells. We here present an analysis of transgenic mice expressing chimeric H-2Dd/Ld MHC class I transgenes, and show that the alpha1/alpha2 domains of H-2Dd were necessary and sufficient to induce "missing self" recognition and to down-modulate Ly49A and Ly49G2 receptors. In contrast, transgenes containing the alpha1/alpha2 domains of H-2Ld induced none of these changes, suggesting that not all MHC class I alleles in a host necessarily take part in NK cell education. The lack of effect of the alpha1/alpha2 domains of H-2Ld on NK cell specificity was surprising, considering that both H-2Ld and H-2Dd have been reported to interact with Ly49G2. Therefore, the role of H-2Ld for protection against NK cells expressing Ly49G2 was re-investigated in a transfection system. In contradiction to earlier reports, we show that H-2Dd, but not H-2Ld, abolished killing by sorted Ly49G2+ NK cells, indicating that H-2Ld does not inhibit NK cells via the Ly49G2 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号