首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methylated constituents of early adenovirus 2 mRNA were studied. RNA was isolated from polyribosomes of cells double labeled with [methyl-3H]methionine and 32PO4 from 2 to 7 g postinfection in the presence of cycloheximide. Cycloheximide ensures that methylation and processing are performed by preexisting host cell enzymes. RNA was fractionated into polyadenylic [poly(A)]+ and poly(A)- molecules using poly(U)-Sepharose, and undergraded virus-specific RNA was isolated by hybridization to viral DNA in 50% formamide at 37 degrees C. Viral mRNA was digested with RNase T2 and chromatographed on DEAE-Sephadex in 7 M urea. Two 3H-labeled RNase T2-resistant oligonucleotide fractions with charges between -5 and -6 were obtained, consistent with two classes of 5' terminal methyl "cap" structures, m7G(5')ppp(5')NmpNp (cap 1) and m7G(5')ppp(5')NmNmpNp (cap 2) (Nm is a ribose 2'-O-methylation). The putative cap 1 contains all the methylated constituents of cap 1 plus Cm. The molar ratios of m7G to 2'-O-methylnucleosides is about 1.0 for cap 1 and 0.5 for cap 2, consistent with the proposed cap structures. Most significant, compositional analysis indicates four different cap 1 structures and at least three different cap 2 structures. Thus there is a minimum of seven early viral mRNA species with different cap structures, unless each type of mRNA can have more than one 5' terminus. In addition to methylated caps, early mRNA contains internal base methylations, exclusively as m6A, as shown by analyses of the mononucleotide (-2 charge) fraction. m6A was present in the ratio of 1 mol of m6Ap per 450 nucleotides. Thus viral mRNA molecules contain two to three internal m6A residues per methyl cap, since there is on the average 1 cap per 1,250 nucleotides.  相似文献   

2.
The majority of the mRNA molecules in HeLa cells contain 1-2 residue(s) of m6Ap and one blocked, methylated 5' terminal "cap" structure. The hnRNA, which is longer than mRNA, contains both m6Ap and caps but 4-6 times as many m6Ap residues per chain. In addition, nuclear molecules contain T2 RNA ase-resistant, methyl-labeled oligonucleotides ("di-" and "tri-" nucleotides) which are not found in mRNA. Some of the dinucleotides may be precursors to the 2'-0-methylated nucleotides in the cap structures. These results are compatible with internal methylation of hnRNA molecules (both m6Ap and 2'-0-methyl) followed by hnRNA cleavage and the addition of the cap structure to generate at least some of the HeLa cell mRNA. It also appears that some hnRNA molecules, which are longer than most mRNA molecules, contain cap structures suggesting the derivation of some mRNA molecules from the 5' regions of hnRNA.  相似文献   

3.
4.
Reaction of DNA with the carcinogens N-methyl-N-nitrosourea and N-nitroso-N,N-dimethylamine produces several methylated species including the premutagenic O6-methylguanine. The mechanism of methylation is believed to be through a methanediazonium ion. We have studied the mechanism of methylation of DNA by these carcinogens by analyzing the stereochemistry of the methyl transfer. DNA was methylated in vitro by (R)- and (S)-N-[2H1,3H]methyl-N-nitrosourea and in vivo by (R)- and (S)-N-[2H1,3H]methyl-N-methyl-N-nitrosamine and (R)- and (S)-N-[2H1,3H]methyl-N-nitrosourea. 7-Methylguanine, 3-methyladenine, O6-methylguanine, and the methylated phosphate backbone were isolated. The methyl groups were converted into acetic acid, and the stereochemistry was analyzed. The identity of the nucleophile did not influence the stereochemistry of the methylation reaction. It was found that the methyl group was transferred with an average of 73% inversion and 27% retention of configuration. The most likely mechanism for the retention of configuration is through multiple methylation events in which nucleophiles which initially react with the methanediazonium ion react as electrophiles with DNA.  相似文献   

5.
The translation of specific maternal mRNAs is regulated during early development. For some mRNAs, an increase in translational activity is correlated with cytoplasmic extension of their poly(A) tails; for others, translational inactivation is correlated with removal of their poly(A) tails. Recent results in several systems suggest that events at the 3' end of the mRNA can affect the state of the 5' cap structure, m7G(5')ppp(5')G. We focus here on the potential role of cap modifications on translation during early development and on the question of whether any such modifications are dependent on cytoplasmic poly(A) addition or removal. To do so, we injected synthetic RNAs into Xenopus oocytes and examined their cap structures and translational activities during meiotic maturation. We draw four main conclusions. First, the activity of a cytoplasmic guanine-7-methyltransferase increases during oocyte maturation and stimulates translation of an injected mRNA bearing a nonmethylated GpppG cap. The importance of the cap for translation in oocytes is corroborated by the sensitivity of protein synthesis to cap analogs and by the inefficient translation of mRNAs bearing nonphysiologically capped 5' termini. Second, deadenylation during oocyte maturation does not cause decapping, in contrast to deadenylation-triggered decapping in Saccharomyces cerevisiae. Third, the poly(A) tail and the N-7 methyl group of the cap stimulate translation synergistically during oocyte maturation. Fourth, cap ribose methylation of certain mRNAs is very inefficient and is not required for their translational recruitment by poly(A). These results demonstrate that polyadenylation can cause translational recruitment independent of ribose methylation. We propose that polyadenylation enhances translation through at least two mechanisms that are distinguished by their dependence on ribose modification.  相似文献   

6.
We have found a novel modification of protein arginine residues in the yeast Saccharomyces cerevisiae. Intact yeast cells lacking RMT1, the gene encoding the protein omega-NG-arginine methyltransferase, were labeled with the methyl donor S-adenosyl-L-[methyl-3H]methionine. The protein fraction was acid-hydrolyzed to free amino acids, which were then fractionated on a high resolution sulfonated polystyrene cation exchange column at pH 5.27 and 55 degreesC. In the absence of the omega-NG, NG-[3H]dimethylarginine product of the RMT1 methyltransferase, we were able to detect a previously obscured 3H-methylated species that migrated in the region of methylated arginine derivatives. The [3H]methyl group(s) of this unknown species were not volatilized by treatment with 2 M NaOH at 55 degreesC for up to 48 h, suggesting that they were not modifications of the terminal omega-guanidino nitrogen atoms. However, this base treatment did result in the formation of a new 3H-methylated derivative that co-chromatographed with delta-N-methylornithine on high resolution cation exchange chromatography, on reverse phase high pressure liquid chromatography, and on thin layer chromatography. From these data, we suggest that the identity of the original unknown methylated residue is delta-N-monomethylarginine. The presence of this methylated residue in yeast cells defines a novel type of protein modification reaction in eukaryotes.  相似文献   

7.
Three sites of N(G),N(G)-arginine methylation have been located at residues 205, 217, and 224 in the glycine-rich, COOH-terminal one-third of the HeLa A1 heterogeneous ribonucleoprotein. Together with the previously determined dimethylated arginine at position 193 [Williams et al., (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5666-5670], it is evident that all four sites fall within a span of sequence between residues 190 and 233 that contains multiple Arg-Gly-(Gly) sequences interspersed with phenylalanine residues. These RGG boxes have been postulated to represent an RNA binding motif [Kiledjian and Dreyfuss (1992) EMBO J. 11, 2655-2664]. Dimethylation of HeLa A1 appears to be quantitative at each of the four positions. Arginines 205 and 224 have been methylated in vitro by a nuclear protein arginine methyltransferase using recombinant (unmethylated) A1 as substrate. This suggests A1 may be an in vivo substrate for this enzyme. Examination of sequences surrounding the sites of methylation in A1 along with a compilation from the literature of sites that have been identified in other nuclear RNA binding proteins suggests a methylase-preferred recognition sequence of Phe/Gly-Gly-Gly-Arg-Gly-Gly-Gly/Phe, with the COOH-terminal flanking glycine being obligatory. Taken together with data in the literature, identification of the sites of A1 arginine methylation strongly suggests a role for this modification in modulating the interaction of A1 with nucleic acids.  相似文献   

8.
Previous spectroscopic studies demonstrated that the oligodeoxynucleotide d(CGC G3 GCG) undergoes a reversible cation-dependent transition between Watson-Crick (WC) hairpin and parallel-stranded "G-DNA" quadruplex structures [Hardin, C.C., Watson, T., Corregan, M., & Bailey, C. (1992) Biochemistry 31, 833-841]. The relative stabilities of the structures were assessed as a function of pH, and it was found that the quadruplex was substantially stabilized (delta Tm = +15 degrees C) when the pH was shifted from 7.5 to 6 (apparent pKa = 6.8). In the present study, the effects of different cations and pH on four specific sequence varients were determined to test the proposal that this stabilization is due to C.C+ base pair formation mediated by N3-protonation of cytosine. Characteristically large differences in stability were observed when structures formed by d(TAT G3 ATA) and d(TAT G4 ATA) were thermally dissociated at pH 7 in the presence of different cations, verifying that Gn tracts bordered by TAT- and -ATA sequences form quadruplex structures. Imino proton NMR results indicate that the d(m5C G m5C G3 G m5C G)4 and d(TAT G4 ATA)4 quadruplex structures are parallel-stranded. It was necessary to increase the K+ concentration from 40 mM to ca. 200 mM to stabilize d(TAT G3 ATA)4, while the d(TAT G4 ATA)4 complex was nearly as stable as the quadruplex formed by d(CGC G3 GCG) under the same conditions. The d(TAT G4 ATA)4 quadruplex was only slightly stabilized at pH 6 relative to pH 7.5 (delta Tm = +3 degrees C), confirming that the unique stabilization that occurs in the pH 6.8 range with [d(CGC Gn GCG)4.ionn] complexes is due to the C residues. The sequence d(m5C G m5C G3 G m5C G) was found to form a very stable quadruplex in K+ or Ca2+. As with the quadruplex formed by the unmethylated analog, the stability is greatly enhanced when the pH is decreased below about 7.2 (pKa,obs = 6.8). Dissociation kinetic constants and activation energies were determined for quadruplexes formed by d(CGC G3 GCG), d(m5C G m5C G3 G m5C G) and d(TAT G4 ATA). Quantitative comparisons showed that methylation produces a complex that is much more stable at pH 7 in 40 mM Na+ than either of the unmodified structures; the rate-limiting activation energy for dissociation of d(CGC G3 GCG)4 was 22 kcal mol-1 less than for the methylated analog.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Using systematic evolution of ligands by exponential enrichment (SELEX), an RNA molecule was isolated that displays a 1,000-fold higher affinity for guanosine residues that carry an N-7 methyl group than for nonmethylated guanosine residues. The methylated guanosine residue closely resembles the 5' terminal cap structure present on all eukaryotic mRNA molecules. The cap-binding RNA specifically inhibited the translation of capped but not uncapped mRNA molecules in cell-free lysates prepared from either human HeLa cells or from Saccharomyces cerevisiae. These findings indicate that the cap-binding RNA will also be useful in studies of other cap-dependent processes such as pre-mRNA splicing and nucleocytoplasmic mRNA transport.  相似文献   

10.
Translation of HeLa cell RNA containing poly(A) in a wheat germ cell-free system is markedly but incompletely inhibited by 7-methylguanosine 5'-monophosphate (m7G5'p). We have analyzed the translation products synthesized in the presence of different concentrations of m7G5'p and find that translation of all mRNAs is equally inhibited. To demonstrate the specificity of the inhibitor for RNAs with 5'-terminal m7G5' ppp... we show that specific translation products of satellite tobacco necrosis virus RNA, which does not have this 5' terminus, are synthesized in the presence of m7G5' p. Protein synthesis programmed by endogenous mRNA in a HeLa cell-free system is inhibited after a 10-min lag by m7G5' p. Other guanosine nucleotides without the 7-methyl group or with the phosphate in a different position are not inhibitor. We show that translation of all mRNAs is inhibited to a similar extent by m7G5'p in the HeLa cell-free system, by synthesizing 35S-labeled proteins in the presence of different inhibitory concentrations of this nucleotide and analyzing the translation products by electrophoresis and autoradiography. Translation of encephalomyocarditis virus RNA added to the HeLa cell-free system is not inhibited by m7"g5p; this viral RNA does not have this nucleotide at the 5' terminus. This indicates that m7G5'p specifically inhibits translation of mRNAs with the 5' terminus m7G5'ppp... and suggests that initiation of translation of picornavirus RNA may proceed via a mechanism different from that of cellular mRNAs.  相似文献   

11.
Effect of cytosine methylation on DNA-DNA recognition at CpG steps   总被引:1,自引:0,他引:1  
Although DNA methylation is a fundamental mechanism for repressing genetic activity, the influence of methyl groups on DNA conformation is found to be small. In this study, the role of cytosine methylation is analysed in the context of DNA condensation by examining its influence on DNA-DNA recognition processes. Previously CpG sites were found to act as sequence determinants for the close and specific self-fit of B-DNA helices into cross-overs. In the present study, the crystal structure of the B-DNA dodecamer d(ACCGCCGGCGCC) methylated at its central CpG sequence shows that the methyl groups do not interfere with DNA self-fitting. In contrast, the two methyl groups form a clamp, which traps the incoming phosphate in the groove-backbone interaction. This geometry allows the formation of two new C-H...O hydrogen bonds between the methyl groups and the anionic oxygen atoms of the phosphate, which may further stabilize the interaction. This finding relates cytosine methylation to the formation of higher-order DNA structures and could provide new insights for understanding the mode of action of DNA methylation in genetic inactivation.  相似文献   

12.
13.
Most eukaryotic mRNAs contain a 5' cap (m7GppX) and a 3' poly(A) tail to increase synergistically the translational efficiency. Recently, the poly(A) binding protein (PABP) and cap-binding protein, eIF-4F, were found to interact [Le et al. (1997) J. Biol. Chem. 272, 16247-16255; Tarun and Sachs (1996) EMBO J. 15, 7168-7177]. These data suggest that PABP may exert its effect on translational efficiency either by increasing the formation of initiation factor-mRNA complex or by enhancing ribosome recycling. To investigate the functional consequences of these interactions, the fluorescent cap analogue, ant-m7GTP, which is an environmentally sensitive fluorescent probe [Ren and Goss (1996) Nucleic Acids Res. 24, 3629-3634] was used to investigate the cap-binding affinity. Our data show that the binding of eIF-(iso)4F or eIF-4F to cap analogue enhanced their binding affinity toward PABP approximately 40-fold. Similarly, the eIF-4F/PABP or eIF-(iso)4F/PABP complexes show a 40-fold enhancement of cap analogue binding as compared to eIF-4F or eIF-(iso)4F alone. At least part of the enhancement of the translational initiation by PABP can be accounted for by direct changes in cap-binding affinity. The interactions of these components also suggest a mechanism whereby the poly(A) tail is brought into close proximity with m7G cap. This effect was examined by fluorescence energy transfer, and it was determined that the PABP/eIF-4F complex could bind both poly(A) and 5' cap simultaneously.  相似文献   

14.
15.
Histone RNA 3' processing in vitro produces one or more 5' cleavage products corresponding to the mature histone mRNA 3' end, and a group of 3' cleavage products whose 5' ends are mostly located several nucleotides downstream of the mRNA 3' end. The formation of these 3' products is coupled to the formation of 5' products and dependent on the U7 snRNP and a heat-labile processing factor. These short 3' products therefore are a true and general feature of the processing reaction. Identical 3' products are also formed from a model RNA containing all spacer nucleotides downstream of the mature mRNA 3' end, but no sequences from the mature mRNA. Again, this reaction is dependent on both the U7 snRNP and a heat-labile factor. Unlike the processing with a full-length histone pre-mRNA, this reaction produces only 3' but no 5' fragments. In addition, product formation is inhibited by addition of cap structures at the model RNA 5' end, indicating that product formation occurs by 5'-3' exonucleolytic degradation. This degradation of a model 3' product by a 5'-3' exonuclease suggests a mechanism for the release of the U7 snRNP after processing by shortening the cut-off histone spacer sequences base paired to U7 RNA.  相似文献   

16.
17.
18.
19.
The synthesis and biological activity of 42 6-substituted-2,4-diaminopyrido[3,2-d]pyrimidines (2,4-diamino-8-deazafolate analogues) are reported. The compounds were synthesized in improved yields compared to previous classical analogues using modifications of procedures reported previously by us. Specifically, the S-phenyl-; mono-, di-, and trimethoxyphenyl-; and mono-, di-, and trichlorophenyl-substituted analogues with H or CH3 at the N10 position and methyl and trifluoromethyl phenyl ketone analogues with H, CH3, and CH2C identical to CH at the N10 position were synthesized. The S10 and N10 alpha- and beta-naphthyl analogues along with the N10 CH3 analogues were also synthesized. These compounds were evaluated as inhibitors of dihydrofolate reductases (DHFR) from Pneumocystis carinii (pc) and Toxoplasma gondii (tg); selectivity ratios were determined against rat liver (rl) DHFR as the mammalian reference enzyme. Against pcDHFR the IC50 values ranged from 0.038 x 10-6 M for 2,4-diamino-6-[(N-methyl-2'-naphthylamino)methyl]pyrido[3,2-d]pyrimidine (28) to 5.5 x 10(-6) M for 2,4-diamino-6[(2',4'-dimethoxyanilino)methyl]pyrido[3,2-d]pyrim idi ne (15). N10 methylation in all instances increased potency. None of the analogues were selective for pcDHFR. Against tgDHFR the most potent analogue was 2,4-diamino-6-[(N-methylanilino)methyl]pyrido[3,2-d]pyrimidine (5) (IC50 0.0084 x 10(-6) M) and the least potent was 2,4-diamino-6[(2'-naphthylamino)methyl]-pyrido[3,2-d]pyrimidine (37) (IC50 0.16 x 10-6 M). N10 methylation afforded an increase in potency up to 10-fold. In contrast to pcDHFR, several of the 8-deaza analogues were significantly selective for tgDHFR, most notably 2,4-diamino-6-[(2'-chloro-N-methylanilino)-methyl]pyrido[3,2-d] pyrimidine (13), 2,4-diamino-6-[(3',4',5'-trimethoxyanilino)methyl]pyrido[3,2-d]pyr pyrimidine (29), and 2,4-diamino-6-[(2',4',6'-trichloroanilino)methyl]pyrido[3,2-d] pyrimidine (32) which combined high potency at 10-8 M along with selectivities of 8.0, 5.0, and 12.4, respectively. The potency of these three analogues are comparable to the clinically used agent trimetrexate while their selectivities for tgDHFR are 17-43-fold better than trimetrexate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号