首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
研究了硅酸乙酯或吡啶改性对纳米HZSM-5分子筛催化剂上苯与1,2,4-三甲苯反应体系中各反应的影响。结果表明:在苯与1,2,4-三甲苯反应体系中,1,2,4-三甲苯的脱烷基反应、烷基转移反应及异构化反应等一次反应主要在纳米HZSM-5外表面及孔口酸位上进行;苯与二甲苯之间的烷基转移反应、二甲苯的脱烷基反应等二次反应主要在纳米HZSM-5内表面酸位上进行;反应由B酸催化。  相似文献   

2.
 摘要:采用等体积浸渍和化学反应沉积法对纳米HZSM-5外表面进行硅酯改性,并采用SEM、XRD及改进的Hammett指示剂法对硅酯改性纳米HZSM-5的形貌、结构和酸性位进行表征,也探讨了硅酯改性纳米HZSM-5催化对二甲苯和邻二甲苯的异构化反应性能。结果表明,硅酯改性降低了HZSM-5的相对结晶度和酸性位的浓度。在温度为400℃、质量空速为2.5 h 1、常压的反应条件下,邻二甲苯仅仅在硅酯改性HZSM-5外表面的酸性位上发生异构化反应,而不是在分子筛的孔道内;对二甲苯异构化反应主要发生在硅酯改性HZSM-5催化剂的外表面。  相似文献   

3.
4.
苯对甲苯歧化与烷基转移反应的影响   总被引:2,自引:0,他引:2  
研究了原料中苯含量对甲苯歧化与烷基转移反应的影响。随着原料中苯含量的增加 ,甲苯歧化反应受到明显抑制 ,同时发生苯和C9芳烃之间的烷基转移反应 ,C9芳烃转化率和C8芳烃选择性明显升高 ,有利于歧化装置多产C8芳烃。  相似文献   

5.
考察了由亚磷酸改性的HZSM-5在673、873和1073K温度下100%水蒸气处理样品的物化和催化性质。采用XRD表征了样品的结构。通过吸附吡啶红外光谱和NH3-TPD进行了酸性和酸分布研究。XPS的研究结果表明,P由 3价氧化成了 5价,并提出了可能的改性的表面结构模型。通过N2吸附.脱附等温线研究了样品的孔结构,样品的吸附-脱附等温线为Ⅰ型和Ⅳ型的复合型,滞后环为IUPAC分类的H4型。Al的状态由^27Al MAS NMS表征。采用AMl(Austin Model I)半经验量子化学方法和模型簇法筛选了磷改性可能的两种结构模型,其区别在于磷上的桥氧与铝配位还是端氧与铝配位,结果表明端氧与铝配位的可能性更大。以正庚烷裂化反应为探针反应考察了样品的活性。  相似文献   

6.
甲苯和1,3,5-三甲苯在不同沸石分子筛上的烷基转移反应   总被引:1,自引:1,他引:1  
研究了甲苯和 1 ,3 ,5三甲苯在 HY,Hβ,HZSM 5 (不同硅铝比 )等沸石分子筛上烷基转移生成二甲苯的活性规律以及二甲苯的选择性 ,发现 Hβ沸石对该反应有较好的活性和稳定性 ,对 Hβ沸石的反应条件进行优化 ,探讨了反应温度 ,进料空速 ,原料配比以及载气流速对甲苯和 1 ,3 ,5三甲苯的转化率和二甲苯选择性的影响 ,并结合吡啶吸附 IR光谱数据将分子筛表面酸性与反应性能进行关联讨论。  相似文献   

7.
在固定床反应器中研究了不同反应条件下纳米HZSM-5和微米HZSM-5在直馏汽油异构化反应中的催化性能,并对纳米HZSM-5和微米HZSM-5进行了XRD、NH3–TPD及低温N2吸附等表征。结果表明:纳米HZSM-5粒径小、外表面酸量丰富、扩散路径短,直馏汽油异构化反应性能优于微米HZSM-5,具体表现在环烷烃和芳烃的生成量大。由于纳米颗粒之间的二次孔可以大量容纳积炭,纳米HZSM5的稳定性好;当反应温度为320?360 ℃、质量空速为1 h-1时,纳米HZSM-5的催化性能最佳。  相似文献   

8.
改性HZSM-5催化剂用于MTP反应的研究   总被引:1,自引:1,他引:0  
考察了不同硅铝比的HZSM-5催化剂和磷、镁或铈改性的HZSM-5催化剂在甲醇制丙烯(MTP)反应中的催化性能。研究了在Mg-HZSM-5和Ce-HZSM-5的催化作用下,反应温度、液时空速、进料组成对MTP反应的影响。确定较佳的反应条件为:温度为380℃~400℃,WHSV在5 h-1左右,纯甲醇进料。在此条件下,Ce-HZSM-5的丙烯产率达55%。  相似文献   

9.
磷改性HZSM-5沸石分子筛上乙醇和乙酸酯化反应的研究   总被引:5,自引:0,他引:5  
用HZSM-5及磷改性HZSM-5作为乙醇和乙酸酯化反应的催化剂,研究了催化剂的处理方法、不同反应条件及磷的加入对酯化反应的影响。结果表明:不同处理方法得到的催化剂,对酯化反应影响很大,磷的加入可以调变沸石表面酸性及孔结构,在适当的磷改性范围内,乙醇转化率变化不大,但酯化反应选择性明显提高。  相似文献   

10.
甲苯歧化与三甲苯烷基转移反应体系的化学平衡   总被引:3,自引:0,他引:3  
对甲苯歧化与三甲苯烷基转移反应体系中反应的化学平衡常数进行了详细计算,并对不同温度、不同进料组成下的平衡组成进行了分析。结果表明,随温度升高,甲苯与三甲苯的芳烃平衡转化率降低,二甲苯的平衡组成亦降低;降低进料中甲苯和三甲苯的摩尔比,甲苯和三甲苯的总芳烃平衡转化率降低,而二甲苯的平衡组成明显上升。比较了β沸石催化剂上此体系在不同空速和温度下的化学反应产物组成与平衡组成,升高温度有利于缩小化学反应与平衡的差距。  相似文献   

11.
 以正丁胺为模板剂、水玻璃为硅源、硫酸铝为铝源,采用水热晶化法合成出酸性和晶粒大小不同的ZSM-5分子筛,通过XRD、BET、SEM、NH3-TPD和Py-IR方法对催化剂进行了表征,并在连续流动固定床反应器上对其进行了苯与乙醇烷基化反应性能评价。结果表明,ZSM-5催化剂的酸性质是影响苯与乙醇烷基化反应中苯转化率和乙苯选择性的重要因素,晶粒大小在一定程度上对乙苯的选择性有影响。酸性弱、酸量少的小晶粒ZSM-5分子筛乙苯选择性和苯的转化率能同时达到最优。考察了操作条件对催化性能较好的小晶粒HZSM-5分子筛上苯与乙醇烷基化反应苯的转化率和乙苯选择性的影响,得到该催化剂的最佳反应条件:反应温度380 ℃,苯/醇摩尔比3 ~ 5,质量空速3 ~ 5 h-1。  相似文献   

12.
负载杂多钨酸催化剂上苯与二异丙苯烷基转移反应   总被引:4,自引:0,他引:4  
在负载杂多钨酸催化剂上,考察了反应原料组成、杂多钨酸负载量(lcat)、催化剂对反应物质量比(mcat/mrea)、反应温度(T)、反应时间(t)及原料中苯基(C6H5-)和异丙基((CH3)2CH—)的摩尔比(n(C6)/n(i—C3))对苯与二异丙苯烷基转移反应的影响。结果表明,苯与二异丙苯的反应是由多个可逆反应组成的平衡体系,产物组成仅与反应温度和n(C6)/n(i—C3)有关;增加杂多钨酸负载量和催化剂用量、提高反应温度均能缩短反应的平衡时间,但反应温度高于180℃、n(C6)/n(i—C3)低于3时,异丙苯的选择性下降。  相似文献   

13.
采用Hammett指示剂法、表面零电荷点ZPC(Zero point of charge)和CO2(NH3)TPD法对HZSM-5表面酸碱中心的强度和数量进行了表征,研究了HZSM-5对芥子气(HD)催化降解,并采用GC-MS、GC-FPD等手段检测了催化降解的产物.结果表明,HZSM-5的pKa值为-3.0~-5.6,为典型的固体酸性氧化物.在25℃空气(20 0A~30%RH)条件下,HZSM-5能降解HD液滴,反应的假一级速率常数为5.3×10-6s-1.HD液滴于HZSM-5表面的降解产物主要为2-chloroethyl 2-hydroxyethyl sulfide(CH)和1,4-dithiane,表明HD液滴在酸中心的作用下主要发生加成-消去反应.  相似文献   

14.
磷钨酸催化苯与多乙苯的烷基转移反应   总被引:1,自引:0,他引:1  
采用搅拌高压釜,以磷钨酸为催化剂,研究了苯与多乙苯的烷基转移反应,多乙苯主要是二乙苯和三乙苯,结果表明,磷钨酸的预处理温度,反应温度,苯与多乙苯中乙基的摩尔比,反应原料中的水分及磷钨酸与反应原料的质量比,都显著地影响二乙苯和三乙苯的转化率以及乙苯的选择性,磷钨酸的催化活性和其酸强度密切相关,磷钨酸的酸强度越高,其催化活性也越高,磷钨酸的酸强度同时受预处理温度和反应原料中水分的影响。较好的烷基转移反应条件为:磷钨酸预处理温度210-230℃,反应温度160-200℃,反应原料中的水分含量≤50mg/kg,苯与多乙苯中乙基的摩尔比>6.6,磷钨酸与反应原料的质量比>0.0456,在上述反应条件下,二乙苯的转化率>86%,三乙苯的转化率>79%,生成乙苯的选择性>99%。  相似文献   

15.
研究了3种层次不同的苯和多乙苯烷基交换反应数学模型,包括两种动力学模型和一种可计算在不同条件下多乙苯转化率的经验数学模型。结果表明,二级反应动力学模型虽可给出正向及逆向反应速率常数k值,但计算精度低;类二级反应动力学模型既可给出正向及逆向反应k值,还能使多乙苯转化率的计算平均相对误差降到5%以下。经验数学模型可给出多乙苯转化率与过程变量关系的等值线图。  相似文献   

16.
HZSM-5分子筛上异丁硫醇催化转化反应   总被引:1,自引:0,他引:1  
探讨了在固定床微型反应器中,异丁硫醇在HZSM-5分子筛催化剂上的催化反应的规律。结果表明,在较低温度(300℃)下,异丁硫醇可以裂解生成H2S。当反应体系中加入甲醇后,改变了硫醇裂解生成H2S的反应途径,产物中出现甲硫醇和甲硫醚;乙醇的加入,使H2S的产率略有升高,但过多的乙醇含量会占据较多的催化剂活性位而使H2S产率又有所降低。催化剂的酸性对硫醇转化反应具有较大影响,酸性越强,硫醇的转化越彻底。硫醇在固体酸催化剂上的转化反应是按照正碳离子机理进行的,首先氢正离子进攻硫醇硫原子并脱去H2S,添加甲醇后,氢正离子进攻甲醇氧原子脱水形成甲基正离子,甲基正离子进攻硫醇硫原子并完成反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号