首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用平衡合金法,利用X射线衍射、扫描电镜及能谱分析,确定Mg-Zn-Al三元系富镁角300°Cα-Mg相平衡关系和相组成。结果表明:在富镁角存在3个三相区:α-Mg+Mg17Al12(γ)+Al5Mg11Zn4(φ),α-Mg+Mg32(Al,Zn)49(τ)+Al5Mg11Zn4(φ)和α-Mg+MgZn+Mg32(Al,Zn)49(τ)。与α-Mg相平衡的金属间化合物都具有很大的成分范围,并非呈线性。同时Zn和Al都能够溶解在α-Mg固溶体中,使金属间化合物达到相平衡。  相似文献   

2.
利用SEM,EPMA,XRD和DSC,对Mg-Zn-Ca系镁基固溶体400℃时的溶解度以及镁基固溶体与化合物之间的平衡相关系进行了研究.结果表明,在Mg-Zn系中加入Ca后,T1和T2相在400℃时依然是富Mg角的主要三元化合物,但只有T1相与镁基固溶体相平衡,且α-Mg+T1两相区明显缩小.400℃时,Mg-Zn-Ca系低Ca侧存在一个可与镁基固溶体相平衡的液相区,其含Ca量小于8.4%(原子分数);但Zn/Ca值小于1.7的三元合金中不会有液相存在.Mg-Zn-Ca系低Ca侧400℃等温截面相图中存在着4个三相区:α-Mg+Mg2Ca+T1,α-Mg+T1+Liq,Liq+T1+T2和Liq+T2+Mg2Zn3.  相似文献   

3.
采用平衡合金法,利用X射线衍射、扫描电镜及能谱分析,系统地研究了Mg-Zn-Al三元系富镁角335°C的平衡相组成及其成分。从实验上证实,α-Mg固溶体并不与Mg32(Al,Zn)49(τ)三元金属间化合物或q准晶相平衡,而仅与一个三元化合物Al5Mg11Zn4(φ)相平衡。获得了φ相在335°C的整个成分范围,即:52.5%~56.4%Mg、13.6%~24.0%Al、19.6%~33.9%Zn(摩尔分数)。Al在Mg Zn相中的固溶度远大于在Mg7Zn3相中的固溶度,其最大值可达8.6%Al(摩尔分数)。Al和Zn可以同时固溶在α-Mg固溶体中。  相似文献   

4.
利用SEM,EPMA,XRD和TEM对Mg-Zn-Ca系富Mg区域三元化合物的成分、结构及其相平衡进行了研究.结果表明,Mg-Zn-Ca系富Mg区域存在2个可与镁基固溶体相平衡的三元化合物T1和T2.其中化合物T1为线性化合物,成分(原子分数,%,下同)为:Ca约16,Zn 16.8-49.5,Mg余量;晶体结构为六方...  相似文献   

5.
Mg-Zn-Nd合金中的低Nd三元化合物T1相的研究   总被引:2,自引:0,他引:2  
利用扫描电镜、电子探针、X射线衍射仪和透射电镜对Mg-Zn-Nd系低Nd三元化合物T1相的成分、结构及其相平衡关系进行了研究.结果表明,在Mg-Zn-Nd系低Nd侧存在一个六方结构的三元化合物T1相,其晶格常数为a=b=1.5 nm、c=0.87 nm;其成分(原子分数,%)范围为:Mg 27.0-33.4,Zn 60.2-66.4,Nd 6.1-7.4.该化合物在300-400 ℃的温度区间与α-Mg存在两相平衡.在300,350和400 ℃时分别存在T1 α-Mg MgZn,T1 MgZn L及T1 Mg2Zn3 L三相区.  相似文献   

6.
采用合金法,利用X射线衍射、扫描电镜及能谱成分分析等手段测定Mg-Zn-Al合金350℃时的相平衡关系及其成分,建立富镁角350℃等温截面。结果表明:α-Mg固溶体与L、φ、γ三相保持相平衡关系,不存在以前普遍认为的τ与α-Mg的相平衡。获得350℃时φ相成分范围,即53.5%~57.2%Mg、17.7%~30.7%Zn和15.8%~27.7%Al(摩尔分数)。Zn和Al两种元素可以同时固溶于α-Mg相中。但Al的加入提高了Zn在α-Mg中的溶解度,当α-Mg和L相平衡时,溶解度最大可达3.9%,远大于Mg-Zn二元系的2.1%。而当α-Mg与γ相平衡时,Zn的加入降低Al在α-Mg中的溶解度,即由Mg-Al二元系的7.8%降至5.2%。Al在Mg-Zn二元金属间化合物中的固溶度较大,可达7.7%,从而使其热稳定性得到提高。  相似文献   

7.
利用SEM、XRD以及EPM对Mg-Zn-La系相图中富Mg角300℃的固态相平衡进行了研究.结果表明,在Mg-Zn-La系存在一个线性化合物(Mg,Zn)92La8(T相),而且在富Mg角存在一个由T相 α-Mg相组成的宽阔的两相区,以及α-Mg MgZn(La)相 T相的三相区.  相似文献   

8.
采用雾化-双辊急冷法成功制备了快速凝固(RS)Mg-Zn-Ca合金薄片,分析了不同含量的Ca对RS Mg-Zn合金微观组织、物相种类和热稳定性的影响。结果表明,RS Mg-6Zn合金的组织细小,晶粒尺寸为6~10μm,其相组成为α-Mg、Mg51Zn20相及少量的MgZn2和Mg2Zn3相。随着Ca的加入及其含量的增加,合金的组织显著细化(达到3~5μm)、析出相的数量大幅度增加,同时低熔点的Mg51Zn20相逐渐被大量热稳定的Ca2Mg6Zn3和Mg2Ca相替代,有效地阻碍了高温下晶界的运动,从而有助于合金组织热稳定性的提高;其中,RS Mg-6Zn-5Ca合金最为显著。  相似文献   

9.
通过Mg-4Al-2Ca-xZn系镁合金的设计,研究添加不同含量的Zn对合金微观组织及力学性能的影响。分析得出,铸态Mg-4Al-2Ca合金组织主要由α-Mg、β-Mg17Al12相和少量Al2Ca相组成;当合金中添加2%、4%和6%的Zn后,随着Zn含量的增加合,金的初生相α-Mg变化明显,合金组织中Al2Ca相增加,形成了Mg32(Al,Zn)49相、MgZn相和少量Mg5Zn2Al2化合物;在Zn含量为6%时,合金的初生相α-Mg细化明显,且具有等轴状形态。在时效时间相同的情况下,Zn元素的增加使α-Mg相细化,在相界处析出相减少。经过340℃保温20 h固溶后,在180℃进行一系列的时效处理结果的分析表明,时效72 h时,Mg-4Al-2Ca-xZn(x=0,2,4,6)合金的硬度都达到最大值,分别为72.9、75.1、80.7和83.9 HB,硬度值随Zn含量的增加而增大。  相似文献   

10.
Mg-Sn-Y三元系富Mg角500℃等温截面的测定   总被引:1,自引:0,他引:1  
采用合金法,利用XRD、SEM-EDS测定一系列Mg-Sn-Y三元合金在500℃下富Mg角处相平衡关系及各相平衡成分,建立Mg-Sn-Y三元系在500℃下富Mg角处的等温截面相图。结果表明:Mg-Sn-Y三元系富Mg角处存在Mg2Sn、MgSnY、Sn3Y5和Mg24+xY54种化合物与α-Mg固溶体平衡,从而构建3个三相区和4个两相区;Sn在α-Mg基体中的固溶度为2.5%~3.9%(摩尔分数),Y在α-Mg基体中的固溶度为1.1%,但二者不能同时固溶到α-Mg基体中,同时Sn3Y5相中大约可以固溶3.6%~4.1%的金属Mg;由于MgSnY和Sn3Y5等一些高熔点化合物在高温下能够稳定存在,使得Mg-Sn-Y体系有可能成为一种潜在的新型耐热镁合金。  相似文献   

11.
普通凝固Mg-Zn-Y合金中的准晶相   总被引:11,自引:0,他引:11  
采用普通凝固技术制备了镁合金稳定态准晶相.通过光学显微镜、X射线衍射、扫描和透射电子显微分析,确定了准晶的组织、相成分及结构.实验结果发现:Mg-Zn-Y三元合金在室温冷却过程中,准晶相直接从液相形核、长大;当合金成分为Mg74Zn25Y1时,凝固组织为MgZn基体相、析出相为α-Mg固溶体及二十面体Mg30Zn60Y10准晶相;当x(Y)为2%、3%时,合金中出现共析组织.  相似文献   

12.
采用光学显微镜、扫描电镜和显微硬度仪等研究了T4和T6热处理对Mg-2.5Zn-1.5Ca-0.22Zr镁合金显微组织及硬度的影响。结果表明:Mg-2.5Zn-1.5Ca-0.22Zr镁合金经T4热处理之后,网状结构的β-Ca2Mg6Zn3相逐渐分解并转变为不规则的团聚的块状结构,MgZn2相逐渐溶解于α-Mg基体中,硬度比铸态时显著提高,达到63.87 HV;经过不同时间的T6热处理之后,MgZn2相从α-Mg基体中重新析出,球状的Mg2Ca中间化合物均匀的分布于晶粒内且发生明显长大。随着时效时间的延长,MgZn2相增多,对位错的钉扎增强,合金的硬度提高,在"峰时效"时的硬度达到64.97 HV。410℃×24 h固溶处理后150℃×8 h时效处理为Mg-2.5Zn-1.5Ca-0.22Zr镁合金的最佳热处理工艺。  相似文献   

13.
研究高Ca含量Mg-Ca合金作为骨修复材料在模拟体液中的腐蚀降解行为。采用扫描电子显微镜(SEM)和X射线衍射(XRD)对Mg-30%Ca(质量分数)合金的显微组织及相成分进行表征。将Mg-30%Ca合金在模拟体液中浸泡90 d后,观察和测试最终产物的微观形貌、成分以及细胞毒性。结果表明:Mg-30%Ca合金的主要相成分为α-Mg和Mg2Ca相,在浸泡过程中,Mg2Ca相作为阳极,而α-Mg相作为阴极;Mg-30%Ca合金在模拟体液中浸泡的最终腐蚀产物由少量的的黑色沉淀颗粒和白色悬浮颗粒组成,白色悬浮颗粒为Mg(OH)2,而黑色沉淀颗粒具有核壳结构;细胞毒性实验证明黑色沉淀颗粒无细胞毒性。  相似文献   

14.
比较研究了Mg-3Ce-1.2Mn-0.9Sc和Mg-3Ce-1.2Mn-1Zn镁合金的铸态组织和力学性能。结果表明:含Sc合金主要由α-Mg、Mg12Ce和Mn2Sc相组成,而含Zn合金则主要由α-Mg和Mg12Ce相组成。然而,含Sc和含Zn铸态合金中Mg12Ce相的形貌是不同的。含Sc合金中的Mg12Ce相主要呈颗粒状,而含Zn合金中的Mg12Ce相则主要呈连续和/或准连续的网状。同时,含Sc合金的晶粒较含Zn合金的相对较为细小。此外,虽然含Sc合金和Zn合金在室温和300°C下具有相似的抗拉性能,但含Sc合金在300°C和30MPa下持续100h后的抗蠕变性能较Zn合金的好。  相似文献   

15.
利用TEM和HRTEM研究Mg-8Zn-4Al-1Ca合金的时效微观组织。结果表明:Mg-8Zn-4Al-1Ca合金较Mg-8Zn-4A1合金时效硬度显著增高。Mg-8Zn-4Al-1Ca合金在160°C时效16 h,有大量的盘状Ca2Mg6Zn3相沉淀弥散析出,此外,合金的微观组织中还存在晶格畸变、蜂窝状的莫尔条纹、刃型位错及位错环;经48 h时效后合金中沉淀相为粗大的盘状沉淀相和细小、弥散的粒状沉淀相;经227 h时时效后后,其组织中存在大量MgZn2相和Ca2Mg6Zn3相。因此,在Mg-8Zn-4Al-1Ca时效160°C的合金中添加Ca元素能有效提高合金的时效硬度及促进MgZn2强化相的生成。  相似文献   

16.
利用坩埚电阻炉熔炼Mg-1%Ca-1%Zn合金铸锭,在380℃进行挤压变形处理,采用金相显微镜、X射线衍射仪、拉伸试验机研究了挤压变形处理对Mg-1%Ca-1%Zn合金组织与性能的影响。结果表明:Mg-1%Ca-1%Zn合金铸锭的显微组织由α-Mg、Mg2Ca和Mg6Ca2Zn3相组成,经挤压后第二相破碎,发生动态再结晶,晶粒显著细化,第二相沿晶界分布状态得到改善。与铸态相比,挤压后Mg-1%Ca-1%Zn合金的力学性能显著提高,且随着拉伸试验中拉伸速率增加,合金的强度增加,塑性下降,表现出应变率强化效应。  相似文献   

17.
采用普通凝固技术制备了含有长周期堆垛有序(long period stacking ordered,LPSO)结构相的Mg92Zn4Y4和Mg92Zn4Y3Gd1合金。通过OM、SEM、EDS、XRD和TEM分析了合金中各相形貌、微区成分及结构。结果表明:Zn/RE原子比为1的2种铸态镁合金中均存在14H-LPSO结构相;在Mg-Zn-Y合金中添加稀土元素Gd增加了合金的形核质点并促进了长周期堆垛有序结构相的形成,14H-LPSO相体积分数由12.1%增至30.4%;LPSO结构相在高温形成时分割了αMg树枝晶,基体平均晶粒尺寸由50μm降至10μm以下;铸态Mg92Zn4Y4合金的凝固组织为α-Mg固溶体+Mg12Zn Y+Mg3Zn3Y2+Mg-Y;铸态Mg92Zn4Y3Gd1合金的凝固组织主要为α-Mg固溶体+Mg12Zn(Y,Gd)+Mg3Zn3(Y,Gd)2;室温条件下,Mg92Zn4Y4和Mg92Zn4Y3Gd1合金的压缩率达到12.4%和15.5%,热导率分别为99.233和88.639W·(m·K)-1。  相似文献   

18.
采用双辊快速凝固技术制备了Mg-6Zn-xCa合金薄带,通过金相显微镜、扫描电镜、X射线衍射仪、差示扫描量热分析仪及显微硬度计研究了薄带的组织与性能特征。结果表明,不仅快速凝固显著细化晶粒和第二相,Ca也有助于合金微观组织的进一步细化;快速凝固Mg-6Zn合金的组织由过饱和固溶体a-Mg、Mg51Zn20,以及少量的Mg2Zn3和MgZn2组成。随着Ca的加入,Mg2Ca、Ca2Mg6Zn3和MgZn2相逐渐增多,而Mg2Zn3和Mg51Zn20却有所减少,因此,Ca的添加有助于提高快速凝固Mg-6Zn合金的热稳定性。  相似文献   

19.
Sn和Ca对ZA62合金组织稳定性的影响   总被引:1,自引:0,他引:1  
采用金相显微镜、XRD、SEM和硬度测试等手段研究了Sn、Ca合金化Mg-6Zn-2Al合金在200℃长时间退火过程中的组织演变行为和硬度变化规律.Sn合金化ZA62合金由α-Mg固溶体、MgZn离异共晶和Mg2Sn析出相组成.在长时间退火过程中,含Sn的ZA62合金没有发生明显的晶粒长大,也没有析出新相.由于MgZn相和Mg2Sn相的析出,合金硬度-时间曲线上出现两个峰值.随着退火时间的进一步延长,Mg2Sn相聚集长大,导致合金硬度有所下降.微量Ca的加入可以加快MgZn相和Mg2Sn相的析出过程,抑制其聚集长大,使合金硬度值在长时间退火过程中保持较高的水平,因而Mg-6Zn-2Al-3Sn-0.2Ca合金具有很高的组织稳定性.  相似文献   

20.
利用OM、SEM、EDS、XRD及DSC等测试方法研究了复合添加Yb和Ca对Mg-6Zn合金组织的影响。结果表明:Mg-6Zn-0.2Ca合金铸态组织主要由α-Mg、Mg7Zn3、MgZn2及MgZn等相组成,合金组织有被Ca细化趋势;复合添加微量Ca和Yb后,枝晶组织呈"花瓣"状,并随Yb含量增加,"花瓣"状组织明显增多,其晶粒稍有细化;经固溶处理(T4)后,Mg-6Zn-0.2Ca-xYb(x=0、1、1.5)合金组织由铸态时枝晶转变成等轴晶,与Mg-6Zn-0.2Ca合金相比,含Yb合金晶粒有明显粗化现象;Mg-6Zn-0.2Ca-1.5Yb合金中含有稳定的三元Mg-Zn-Yb化合物,初步认定该化合物中Zn、Yb的原子比在4~6之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号