共查询到19条相似文献,搜索用时 62 毫秒
1.
800MHz CMOS低噪声放大器的设计 总被引:3,自引:0,他引:3
本文采用0.25μm CMOS工艺,设计和研制了800MHz频段低噪声放大器.放大器采用共源共栅结构,芯片内部埋置了螺旋电感.放大器的增益为16.4dB、噪声系数小于1.3dB、工作电压2.5V时,功耗为35mW.测试结果达到了设计指标,一致性良好. 相似文献
2.
3.
采用UMC 0.18 μm 标准CMOS工艺设计了一款433 MHz ASK接收机中的LNA电路,采用差分带源极负反馈的共源共栅结构,实现单输入双输出,与混频器级联时,避免了使用外接平衡转换器.测试结果表明,该放大器的噪声系数为1.65 dB,增益则达到了18.2 dB,因此将很大程度上提高了整个接收机的噪声性能.同时输入输出匹配分别达到了-28 dB和-24 dB,IIP3也达到了-9.8 dBm,在1.8 V 的电源电压下,功耗为6.5 mW.芯片的尺寸为0.6 mm×0.9 mm. 相似文献
4.
通过一个符合性能指标的,用于射频接收系统的CMOS低噪声放大性能的设计,讨论了深亚微米MOSFET的噪声情况,并在满足增旋和功耗的前提下,对低噪声放大噪声性能进行分析和优化,该LNA工作在2.5GHz电源电压,直流功耗为25mW,能够提供19dB的增益(S21),而噪声系数仅为2.5dB,同时输入匹配良好,S11为-45dB,整个电路只采用了一个片外电感使电路保持谐振,此设计结果证明CMOS工艺在射频集成电路设计领域具有可观的潜力。 相似文献
5.
6.
提出了一种基于TSMC 0.18μm CMOS工艺的2.4 G频率下带负反馈的CMOS低噪声放大器。采用带有级间匹配的共源共栅电路结构,使放大器具有较高的增益和反相隔离度,并在输入端加入π型网络,保证较高的品质因数和信噪比。此外,该放大器在输出端引入反馈支路,有效地降低了密勒效应的影响。通过ADS软件仿真得到很好的结果:在1.8 V电压下,输入输出匹配良好,电路增益为为15.15 dB,噪声系数为0.62 dB,直流功耗为7.9 mW。 相似文献
7.
8.
采用场效应晶体管ATF541M4设计了一个工作于LTE第38频段(2570MHz-2620MHz)的低噪声放大器。首先介绍设计低噪声放大器的理论基础,其次在ADS中进行仿真,最后将仿真结果与实测结果进行对比,得出结论。实测结果表明,该低噪声放大器在指定频率范围内噪声系数小于ldB,增益大于13dB,带内波动小于±0.25dB。 相似文献
9.
文章阐述了低噪声放大器的一部分主要技术指标,通过对电路设计中应该注意的诸多要点分析了此类高频微带电路的复杂结构和形式,介绍了利用微波工作室软件,对GaAs场效应管S参数中增益和噪声系数等参数进行了分析并设计了两级低噪声放大器,并对电路进行模拟和优化,通过电路调试,软件修正,得到最终电路设计,从最终的测试结果可以看出该放大器具有良好的射频性能,已经达到了预定的技术指标。 相似文献
10.
SPACEKLABS研制成这种最新的低噪声放大器在毫米波段 ,33~ 5 0GHz(WR - 2 2 )和 4 0~ 6 0GHz(WR - 19)能够提供全波段的性能。在此频段风 ,典型增益为 18~ 2 0dB ,最小噪声系数为 3dB。在 +8~ +11VDC时 ,DC为 5 0mA。全波段毫米波低噪声放大器@一凡 相似文献
11.
12.
设计了一个可以同时工作在900 MHz和2.4 GHz的双频带(Dual-Band)低噪声放大器(LNA).相对于使用并行(parallel)结构LNA的双频带解决方案,同时工作(concurrent)结构的双频带LNA更能节省面积和减少功耗.此LNA在900MHz和2.4 GHz两频带同时提供窄带增益和良好匹配.该双频带LNA使用TSMC 0.25 μm 1P5M RF CMOS工艺.工作在900MHz时,电压增益、噪声系数(Noise Figure)分别是21 dB、2.9 dB;工作在2.4 GHz时,电压增益、噪声系数分别是25dB、2.8 dB,在电源电压为2.5 V时,该LNA的功耗为12.5mW,面积为1.1mm×0.9 mm.使用新颖的静电防护(ESD)结构使得在外围PAD上的保护二极管面积仅为8 μm×8 μm时,静电防护能力可达2 kV(人体模型) 相似文献
13.
结合一个2.4 GHz CMOS低噪声放大器(LNA)电路,介绍如何利用Cadence软件系列中的IC 5.1.41完成CMOS低噪声放大器设计.首先给出CMOS低噪声放大器设计的电路参数计算方法,然后结合计算结果,利用Cadence软件进行电路的原理图仿真,并完成了电路版图设计以及后仿真.仿真结果表明,电路的输入/输出均得到较好的匹配.由于寄生参数,使得电路的噪声性能有约3 dB的降低.对利用Cadence软件完成CMOS射频集成电路设计,特别是低噪声放大器设计有较好的参考价值. 相似文献
14.
基于短沟道MOS器件的过量因子随沟道长度降低缓慢增加的特征,研究了短沟道下共栅结构宽带低噪声放大器的噪声性能,并在0.18μm CMOS工艺下设计实现了共栅结构的宽带低噪声放大器.流片测试结果表明,在1.8 V电源电压、4.1 mA工作电流下,该系统获得6.1 dB的最小噪声系数;综合性能与长沟道下相近,符合理论分析和设计要求. 相似文献
15.
设计了一种应用于超宽带系统中的可变增益宽带低噪声放大器。电路中采用了二阶巴特沃斯滤波器作为输入和输出匹配电路;采用了两级共源共栅结构实现电路的放大,并通过控制第二级的电流,实现了在宽频带范围内增益连续可调;采用了多栅管(MGTR),提高了电路的线性度;设计基于SMIC 0.18μm CMOS工艺。仿真结果显示,在频带3~5 GHz的范围内最高增益17 dB,增益波动小于1.8 dB,输入和输出端口反射系数分别小于-10 dB和-14 dB,噪声系数nf小于3.5 dB,当控制电压Vctrl=1.4 V时,IIP3约为2 dBm,电路功耗为16 mW。 相似文献
16.
17.
0.65 V 3 mW CMOS低噪声放大器设计 总被引:1,自引:0,他引:1
给出了工作电压为0.65 V,功耗仅为3 mW的低噪声放大器设计。设计采用TSMC 0.18μm RF CMOS工艺完成。最终的电路仿真结果显示,在0.65 V的电源电压下,S21达到17 dB,S11小于-11 dB,噪声系数小于2.2 dB,线性度指标IIP3为-11.6 dBm。 相似文献
18.
为实现性能更优的超宽带(UWB)射频前端低噪声放大器(LNA),本文提出了一种通用的基于CMOS工艺的超宽带LNA优化设计方法.基于源端电感负反馈的LNA电路模型,本文提出利用最优化的数学方法分别确定晶体管尺寸、输入匹配网络和负载网络各元件参数的方法,实现了较好的输入阻抗匹配,达到了较高的增益、较好的增益平坦度以及优秀的噪声系数,并具有较低的功耗;本设计方法所用无源元件不但适宜CMOS集成,而且对工艺偏差具有一定的忍耐力.仿真结果说明用上述方法设计的超宽带LNA在工作频带内能够达到预期的各项性能要求. 相似文献
19.
低功耗CMOS低噪声放大器的分析与设计 总被引:2,自引:0,他引:2
基于TSMC 0.18μm CMOS工艺,设计了一种低功耗约束下的CMOS低噪声放大器。与传统的共源共栅结构相比,该电路在共源晶体管的栅源间并联一个电容,以优化噪声;并引入一个电感,与级间寄生电容谐振,以提高增益;通过减小晶体管的尺寸,实现了低功耗。模拟结果表明,在2.45 GHz工作频率下,增益大于14 dB,噪声系数小于1 dB,直流功耗小于2 mW。 相似文献