共查询到18条相似文献,搜索用时 125 毫秒
1.
采用共沉淀法合成了化学组成为CaZr4(PO4)6(简称CZP)的NZP族磷酸盐结晶化合物粉体,分别用XRD和N2吸附BET法表征物相和孔结构,研究了CaZr4(PO4)6对Fe3+和Mg2+的吸附性能。吸附动力学研究表明:CZP对Fe3+的吸附平衡时间为8 h,对Mg2+则为3 h;室温下模拟原液中Fe3+含量处于10~100 mg/L时,CZP对Fe3+的平衡吸附容量为0.336~1.332 mg Fe3+/g CZP;CZP在60℃时对Fe3+的平衡吸附容量要小于20℃时的平衡吸附容量。CZP用量为5 g时,对Fe3+的吸附率为55.22%,合适的吸附剂用量为2 g。 相似文献
2.
3.
4.
5.
6.
按照国产S101型钒催化剂的活性组分配方制备了由3种不同组成的NZP族磷酸盐载体负载的钒催化剂,通过XRD、BET法对催化剂的物相结构、比表面积和孔结构进行了表征,在小型固定床反应器中对催化剂进行了活性评价。结果显示,载体的化学组成对钒催化剂的活性有显著影响,其中,组成为KZr2(PO4)3的NZP族载体较为适合作为钒催化剂的侯选载体材料。 相似文献
7.
对溶胶-凝胶法合成的NZP族介孔CaZr4(PO4)6进行Al掺杂改性,获得了一系列含Al的新型酸性催化剂样品Al-CaZr4(PO4)6。利用X射线衍射、X射线荧光、N2吸附-脱附和NH3的程序升温脱附等技术,表征了样品的物相、Al掺杂量、孔结构和表面酸性;以α-蒎烯的异构化为模型反应表征了样品的酸催化活性。结果表明:经适量Al掺杂改性后的CaZr4(PO4)6仍保持了均匀分布的介孔结构特征,与未经掺杂的CaZr4(PO4)6相比,表面酸性有明显提高。当掺杂的Al与CZP中Zr的物质的量的比分别为0.15和0.20时,获得的催化剂样品Al-CaZr4(PO4)6-0.15和Al-CaZr4(PO4)6-0.20在150℃下对α-蒎烯异构化反应的转化率可以达到40%~47%,而未经掺杂改性的介孔CaZr4(PO4)6在相同反应条件下对α-蒎烯异构化反应的转化率仅为3%,因此,Al掺杂改性可以显著提高介孔CaZr4(PO4)6的酸催化活性。 相似文献
8.
以脲醛树脂为前躯体,在氮气气氛中炭化获得炭吸附材料ACUF,对其结构、表面性质及形貌进行了分析,采用静态法考察了700℃下炭化所得材料ACUF700对不同金属离子的吸附性能. 结果表明,ACUF保留了大量的胺基活性基团,并具有发达的微孔结构. ACUF700的比表面积达702.3 m2/g,平均孔径为2.044 nm,对Pb2+, Cu2+, Fe3+和La3+均有良好的吸附性能,吸附容量分别达39.7, 37.0, 13.0和10.5 mg/g;并具有良好的再生性和重复使用性,循环使用5次后吸附容量变化很小. 吸附过程符合准二级动力学方程,可用Langmuir吸附等温方程描述. 相似文献
9.
10.
用一步碳热还原法制备了Li3V2-xCux(PO4)3/C(x=0.00、0.02、0.05、0.08、0.10、0.15)复合正极材料,并研究了掺杂对材料结构、微观形貌、充放电性能的影响。结果表明掺杂少量铜(Ⅱ)不会影响材料Li3V2(PO4)3的基本结构,但会在Li3V2(PO4)3中形成电子缺陷,提高晶体内部原子的无序化程度,降低极化和电荷转移电阻。从而改善材料的电化学性能。Li3V1.98Cu0.02(PO4)3/C的10 C放电容量比Li3V2(PO4)3/C提高了20 mA.h/g,具有较好的倍率性能。 相似文献
11.
用络合溶胶-凝胶法合成了化学组成为CaZr4(PO4)6(CZP)的NaZr2(PO4)3(NZP)族磷酸盐陶瓷的粉体.初步研究了制备条件对粉体物相和粒径及粒径分布的影响.添加ZnO为烧结助剂,将CZP粉体在950℃下烧结成陶瓷,测定和观察所制备陶瓷的相对密度、平均热膨胀系数、抗压强度和显微结构.结果表明:络合溶胶-凝胶法合成的前驱物经700℃煅烧能得到单相CZP粉体,该粉体具有良好的低温烧结活性.在950℃下烧结得到的CZP陶瓷的相对密度达84%,从室温至900℃的平均热膨胀系数为1.4x10-6/℃,属于低热膨胀陶瓷. 相似文献
12.
《Ceramics International》2017,43(3):3190-3195
Three-dimensional (3D) olivine LiMn0.8Fe0.2PO4 nanoflowers constructed by two-dimensional (2D) nanoflakes have been successfully synthesized through an easy liquid phase method. Hierarchical LiMn0.8Fe0.2PO4/C could be easily formed via a liquid coating technology and subsequent calcination treatment. When acting as cathode materials for lithium ion batteries, the LiMn0.8Fe0.2PO4/C nanoflowers show excellent rate performance and cycle stability. The unique flower-like hierarchical structured LiMn0.8Fe0.2PO4 and thin carbon coating outside make this composite a promising candidate as cathode materials for lithium ion batteries. 相似文献
13.
14.
Xinyuan Wang Heriberto Pfeiffer Jiangjiang Wei Jinyu Wang Jinli Zhang 《Frontiers of Chemical Science and Engineering》2023,17(2):236
Novel CaCO3-enhanced Mn–Fe mixed metal oxides (CMFC) were successfully prepared for the first time by a simple-green hydrothermal strategy without any surfactant or template combined with calcination process. These oxides were then employed as an adsorbent for adsorptive removal of excess fluoride ions. The adsorbent was characterized by SEM, XPS, XRD, FTIR, and BET analysis techniques. The adsorption property of CMFC toward fluoride ion was analyzed by batch experiments. In fact, CMFC exhibited adsorption capacity of 227.3 mg∙g‒1 toward fluoride ion. Results showed that ion exchange, electrostatic attraction and chemical adsorption were the main mechanism for the adhesion of large amount of fluoride ion on the CMFC surface, and the high adsorption capacity responded to the low pH of the adsorption system. When the fluoride ion concentration was increased from 20 to 200 mg∙L‒1, Langmuir model was more in line with experimental results. The change of fluoride ion adsorption with respect to time was accurately described by pseudo-second-order kinetics. After five cycles of use, the adsorbent still maintains a performance of 70.6% of efficiency, compared to the fresh adsorbent. Therefore, this material may act as a potential candidate for adsorbent with broad range of application prospects. 相似文献
15.
利用简单的溶剂热法合成了MIL-101(Fe)/CoFe2O4和MIL-101(Fe)/NiFe2O4磁性金属有机框架纳米复合材料。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、振动磁强计(VSM)、热重分析仪(TGA)和紫外可见分光光度计(UV)等对复合材料的相结构、形貌、磁性能和吸附性能进行了研究。将磁性金属有机框架材料用于吸附污水中罗丹明B(RhB),研究了罗丹明B初始质量浓度对复合材料吸附能力的影响。结果表明,制备的磁性金属有机框架复合材料的形貌均匀、结晶度高,具有高的饱和磁化强度。复合物具有金属有机框架材料和磁性材料的双重优点。MIL-101(Fe)/CoFe2O4对罗丹明B有较高的吸附能力(97.3 mg/g)。热力学研究发现吸附等温方程符合Langmuir模型,吸附动力学研究表明吸附机制与吸附质和吸附剂有关。磁性金属有机框架纳米复合材料作为污水处理剂将具有广阔的应用前景。 相似文献
16.
Kosuke Arai Satoshi Murata Taifeng Wang Wataru Yoshimura Mayumi Oda-Tokuhisa Tadashi Matsunaga David Kisailus Atsushi Arakaki 《International journal of molecular sciences》2022,23(10)
Biomineralization is an elaborate process that controls the deposition of inorganic materials in living organisms with the aid of associated proteins. Magnetotactic bacteria mineralize magnetite (Fe3O4) nanoparticles with finely tuned morphologies in their cells. Mms6, a magnetosome membrane specific (Mms) protein isolated from the surfaces of bacterial magnetite nanoparticles, plays an important role in regulating the magnetite crystal morphology. Although the binding ability of Mms6 to magnetite nanoparticles has been speculated, the interactions between Mms6 and magnetite crystals have not been elucidated thus far. Here, we show a direct adsorption ability of Mms6 on magnetite nanoparticles in vitro. An adsorption isotherm indicates that Mms6 has a high adsorption affinity (Kd = 9.52 µM) to magnetite nanoparticles. In addition, Mms6 also demonstrated adsorption on other inorganic nanoparticles such as titanium oxide, zinc oxide, and hydroxyapatite. Therefore, Mms6 can potentially be utilized for the bioconjugation of functional proteins to inorganic material surfaces to modulate inorganic nanoparticles for biomedical and medicinal applications. 相似文献
17.
模板固相合成磷酸铝及其吸附性能应用研究 总被引:3,自引:2,他引:3
固相方法或固相模板方法在150℃、2h合成磷酸铝或纳米磷酸铝,通过XRD、IR、ICP和化学分析进行了表征。TG研究表明纳米磷酸铝从室温到1000℃范围热稳定性好。并对磷酸铝和3纳米磷酸铝对Cr(VI)的吸附性能进行了研究。结果表明它们对Cr(VI)具有良好的吸附性能。 相似文献
18.
以采用共沉淀法制备的磁性Fe3O4为核,通过硅烷化及酰胺化反应,制备了羧基化磁性Fe3O4复合材料(Fe3O4?SiO2?NH?COOH),通过红外光谱仪(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、磁强度计(VSM)和X射线衍射仪(XRD)等对复合材料的结构进行了表征,并对不同作用条件下Fe3O4?SiO2?NH?COOH吸附Pb2+的效果及Fe3O4?SiO2?NH?COOH的重复使用效能进行了研究。结果表明,具有Fe3O4?SiO2?NH?COOH结构的复合材料已被成功被制备,且该材料仍然能够实现快速磁性分离;Fe3O4?SiO2?NH?COOH对Pb2+的静态吸附动力学数据更符合准二阶动力学,吸附时间为100 min、pH=4.5、Fe3O4?SiO2?NH?COOH用量为1.0 g/L时,Fe3O4?SiO2?NH?COOH对Pb2+的最大吸附容量为208.7 mg/g,且Langmuir方程更能描述该吸附等温过程;Fe3O4?SiO2?NH?COOH对Pb2+的吸附是吸热过程;Fe3O4?SiO2?NH?COOH对Pb2+的吸附量随时间延长先增加后趋于稳定,随pH值的增加先增加后减小;相比于一价阳离子,溶液中二价Ca2+、Mg2+的存在对吸附反应具有一定抑制作用;Fe3O4?SiO2?NH?COOH吸附Pb2+后可洗脱再生,连续重复使用6次后对Pb2+的去除率仍大于50 %。 相似文献