首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper implements and analyzes a CMOS angular velocity- and direction-selective rotation sensor with a retinal processing circuit. The proposed rotation sensor has a polar structure and is selective of the angular velocity and direction (clockwise and counterclockwise) of the rotation of images. The correlation-based algorithm is adopted and each pixel in the rotation sensor is correlated with the pixel that is 45/spl deg/ apart. The angular velocity selectivity is enhanced by placing more than one pixel between two correlated pixels. The angular velocity selectivity is related to both the number and the positions of the edges in an image. Detailed analysis characterizes angular velocity selectivity for different edges. An experimental chip consisting 104 pixels, which form five concentric circles, is fabricated. The single pixel has an area of 91/spl times/84/spl mu/m/sup 2/ and a fill factor of 20%, whereas the area of the chip is 1812/spl times/1825/spl mu/m/sup 2/. The experimental results concerning the fabricated chip successfully verified the analyzed characteristics of angular velocity and direction selectivity. They showed that the detectable angular velocity and range of illumination of this rotation sensor are from 2.5/spl times/10/sup -3/ /spl pi//s to 40 /spl pi//s and from 0.91 lux to 366 lux, respectively.  相似文献   

2.
This paper presents a /spl pi//4-multiple-coupled two-phase linear hybrid stepping motor (LHSM) that has two windings per phase, one of which shares the other phase winding. The proposed motor shows a unique ability to deliver low cogging force without any complex control scheme or additional power electronics hardware in microstepping control. An analytical and experimental comparison between conventional /spl pi//2- and /spl pi//4-multiple-coupled LHSM confirms the effectiveness of the proposed design.  相似文献   

3.
This paper discusses approximate statistical estimates of limiting errors associated with single differential phase measurement of a time delay (phase difference) between two reflectors of the passive surface acoustic wave (SAW) sensor. The remote wireless measurement is provided at the ideal coherent receiver using the maximum likelihood function approach. Approximate estimates of the mean error, mean square error, estimate variance, and Cramér-Rao bound are derived along with the error probability to exceed a threshold in a wide range of signal-to-noise ratio (SNR) values. The von Mises/Tikhonov distribution is used as an approximation for the phase difference and differential phase diversity. Simulation of the random phase difference and limiting errors also is applied.  相似文献   

4.
This paper addresses the statistical properties of eigenfrequency modes (anharmonics, for instance) of BAW crystal resonators in oscillators excited by noise or intended modulation and considered to be sensors of environmental impact. The modulated noisy model of a closed loop oscillator is studied for its amplitude-frequency and phase-frequency modulation characteristics caused by anharmonic influence. Pursuing the aim, we consider in detail amplitude, phase, and the time derivatives of an anharmonic sensor signal and present corresponding probability distributions for the different signal-to-noise ratios (SNR). Both statistical effects caused by noise and intended modulation are considered. Experimental results are also given.  相似文献   

5.
Multidimensional CMOS in-plane stress sensor   总被引:1,自引:0,他引:1  
This paper reports a novel multidimensional complementary metal-oxide semiconductor (CMOS) based stress sensor. The device uses an octagonal n-well in a p-substrate and eight peripheral contacts enabling the current to be switched in eight directions rotated by an angle of /spl pi//4. By taking full advantage of the piezoresistive behavior of single-crystal silicon, the measurement of all in-plane stress tensor components, i.e., /spl sigma//sub xx/, /spl sigma//sub yy/, and /spl sigma//sub xy/, is demonstrated. This information is derived from the zeroth and second angular-order Fourier components of voltage signals parallel and perpendicular to the switched current. Nonlinearities of the system are reduced by proper bias conditions using a center contact. The device was calibrated by applying defined normal stresses using a bending bridge setup. The device behavior was modeled including piezoresistive effects and the junction field effect by a combination of the finite element method and a nonlinear simulation program with integrated circuits emphasis (SPICE) network simulation using junction field effect transistor (JFET) elements. Stress sensitivities of 200 /spl mu/V V/sup -1/ MPa/sup -1/ are demonstrated for the determination of the three stress components.  相似文献   

6.
In this paper, a novel microcomputer temperature-compensating method for an overtone crystal oscillator (MCOXO) is presented. In this method, a ceramic oscillator is chosen, and its output frequency is mixed with the output frequency of an overtone crystal oscillator. A crystal filter is used to suppress the spurious mixing products. A microcomputer is used to control the switch capacitance array that is connected to the ceramic oscillator circuit. The frequency deviation of the crystal oscillator is directly compensated by the output frequency of the ceramic oscillator. As a result, the method is able to overcome the disadvantages of frequency stability degradation and phase noise deterioration that are provoked by adding inductance or frequency multiplication in traditional compensating approaches. At the same time, this method is able to compensate a quite wide frequency range and many types of oscillators, not just crystal oscillators. The experimental compensating results show that, using this method, the frequency-temperature stability of a 100 MHz 5th overtone temperature-compensated crystal oscillator can achieve /spl les/ /spl plusmn/2/spl times/10/sup -6/ for 0-70/spl deg/C.  相似文献   

7.
In this paper, a pixel structure called the optimal pseudoactive pixel sensor (OPAPS) is proposed and analyzed for the applications of CMOS imagers. The shared zero-biased-buffer in the pixel is used to suppress both dark current of photodiode and leakage current of pixel switches by keeping both biases of photodiode and parasitic pn junctions in the pixel bus at zero voltage or near zero voltage. The factor of photocurrent-to-dark-current ratio per pixel area (PDRPA) is defined to characterize the performance of the OPAPS structure. It is found that a zero-biased-buffer shared by four pixels can achieve the highest PDRPA. In addition, the column sampling circuits and output correlated double sampling circuits are also used to suppress fixed-pattern noise, clock feedthrough noise, and channel charge injection. An experimental chip of the proposed OPAPS CMOS imager with the format of 352/spl times/288 (CIF) has been designed and fabricated by using 0.25-/spl mu/m single-poly-five-level-metal (1P5M) N-well CMOS process. In the fabricated CMOS imager, one shared zero-biased-buffer is used for four pixels where the PDRPA is equal to 47.29 /spl mu/m/sup -2/. The fabricated OPAPS CMOS imager has a pixel size of 8.2/spl times/.2 /spl mu/m, fill factor of 42%, and chip size of 3630/spl times/3390 /spl mu/m. Moreover, the measured maximum frame rate is 30 frames/s and the dark current is 82 pA/cm/sup 2/. Additionally, the measured optical dynamic range is 65 dB. It is found that the proposed OPAPS structure has lower dark current and higher optical dynamic range as compared with the active pixel sensor (APS) and the conventional passive pixel sensor (PPS). Thus, the proposed OPAPS structure has high potential for the applications of high-quality and large-array-size CMOS imagers.  相似文献   

8.
In sinusoidal parameter-estimation problems for measurement applications, discrete spectra with high dynamic range are often under investigation. To suppress unwanted interference effects (“leakage”) in the discrete Fourier transform (DFT) spectrum, the application of data windows is common practice. In this paper, the influence of windowing on the bias and variance of the frequency and phase estimates, calculated via the DFT, is investigated. Furthermore, the effect of choosing different sampling start times on both the bias and the variance is discussed.   相似文献   

9.
Results from systematic gas sensing experiments on polymer coated surface-transverse-wave (STW) and surface-acoustic-wave (SAW) based two-port resonators on rotated Y-cut quartz, operating at the same acoustic wavelength of 7.22 /spl mu/m, are presented. The acoustic devices are coated with chemosensitive films of different viscoelastic properties and thicknesses, such as solid hexamethyldisiloxane (HMDSO), semisolid styrene (ST), and soft allyl alcohol (AA). The sensor sensitivities to vapors of different chemical analytes are automatically measured in a sensor head, evaluated, and compared. It is shown that thin HMDSO- and ST-coated STW sensors are up to 3.8 times more sensitive than their SAW counterparts, while SAW devices coated with thick soft AA-films are up to 3.6 times more sensitive than the STW ones. This implies that SAWs are more suitable for operation with soft coatings while STWs perform better with solid and semisolid films. A close-to-carrier phase noise evaluation shows that the vapor flow homogeneity, the analyte concentration, its sorption dynamics, and the sensor oscillator design are the major limiting factors for the sensor noise and its resolution. A well designed ST-coated 700 MHz STW sensor provides a 178 kHz sensor signal at a 630 ppm concentration of tetra-chloroethylene and demonstrates short-term stability of 3/spl times/10/sup -9//s which results in a sensor resolution of about 7 parts per billion (ppb).  相似文献   

10.
A common requirement for the selection of a frequency for sinewave tests of waveform recorders or analog-to-digital converters (ADCs) is to make a selection that guarantees that the phases of the sampled values are uniformly distributed between 0 and 2/spl pi/. It is well known that this requirement is met by choosing a frequency for which there is an exact integer number of cycles J~ in the record length M and that J~ is relatively prime to M. In this paper, we address the question of how well the phase uniformity is maintained when the frequency deviates slightly from its ideal value. We show that, in general, phase uniformity can be so sensitive to frequency deviations that it may be nearly impossible to attain. However, we show that there are special values of J~ for which the phase uniformity is relatively insensitive to frequency deviations. These are the values of J~ whose inverse, modulo M, is either very close to zero or very close to M.  相似文献   

11.
In vivo skin attenuation estimators must be applicable to backscattered radio frequency signals obtained in a pulse-echo configuration. This work compares three such estimators: short-time Fourier multinarrowband (MNB), short-time Fourier centroid shift (FC), and autoregressive centroid shift (ARC). All provide estimations of the attenuation slope (/spl beta/, dB.cm/sup -1/.MHz/sup -1/); MNB also provides an independent estimation of the mean attenuation level (IA, dB.cm/sup -1/). Practical approaches are proposed for data windowing, spectral variance characterization, and bandwidth selection. Then, based on simulated data, FC and ARC were selected as the best (compromise between bias and variance) attenuation slope estimators. The FC, ARC, and MNB were applied to in vivo human skin data acquired at 20 MHz to estimate /spl beta//sub FC/, /spl beta//sub ARC/, and IA/sub MNB/, respectively (without diffraction correction, between 11 and 27 MHz). Lateral heterogeneity had less effect and day-today reproducibility was smaller for IA than for /spl beta/. The IA and /spl beta//sub ARC/ were dependent on pressure applied to skin during acquisition and IA on room and skin-surface temperatures. Negative values of IA imply that IA and /spl beta/ may be influenced not only by skin's attenuation but also by structural heterogeneity across dermal depth. Even so, IA was correlated to subject age and IA, /spl beta//sub FC/, and /spl beta//sub ARC/ were dependent on subject gender. Thus, in vivo attenuation measurements reveal interesting variations with subject age and gender and thus appeared promising to detect skin structure modifications.  相似文献   

12.
Equivalent Magnetic Noise Limit of Low-Cost GMI Magnetometer   总被引:1,自引:0,他引:1  
《IEEE sensors journal》2009,9(2):159-168
We present a noise analysis of a giant magnetoimpedance (GMI) sensor using a peak detector at the optimal magnetic field working bias point of a sensor wire, by considering internal noise sources (intrinsic GMI device associated noise sources and conditioning electronic noise sources). An expression is obtained for the theoretical expected noise for known electronic design parameters and physical characteristics of the GMI wire. The most significant contributions to noise in a GMI measurement, using two basic oscillators (either a simple discrete RC oscillator or quartz oscillator) along with a peak detector, are presented. We discuss the expected extrinsic equivalent magnetic noise limit.   相似文献   

13.
Lead-selective solvent polymeric membrane electrodes, based on some recently synthesized 9, 10-anthraquinone derivatives, are described. The electrode exhibits a good Nernstian response for Pb (II) ions over a wide concentration range of 1.0/spl times/10/sup -6/-1.0/spl times/10/sup -2/ M with a slope of 28.9 mV decade/sup -1/. The potential-pH profile of membrane based on 1-hydroxy-2-({2-[2-(2-hydroxyethoxy)ethoxy]ethoxy}methyl)anthra-9, 10-quinone (A/sub 3/) demonstrated a lack of H/sup +/ interference within a wide pH range (1.5-6.8). The detection limit is 6.7/spl times/10/sup -7/ M. The developed sensor has a very short response time (2.0 s), and it can be used as a working electrode in a flow injection system. The lifetime of the proposed sensor is 120 days (without any considerable divergence in potentials) with good reproducibility (SD=/spl plusmn/0.1 mV). The proposed sensor revealed good selectivity for Pb (II) over a wide variety of other metal ions. It can be used as an indicator electrode in the potentiometric titration of lead ions, with EDTA, oxalate, chromate, and hydroxide ions, and in direct determination of lead in a wastewater sample.  相似文献   

14.
Nanocrystalline TiO/sub 2/ modified with Nb has been produced through the sol-gel technique. Nanopowders have been obtained by means of the hydrolysis of pure alkoxides with deionized water and peptization of the resulting hydrolysate with diluted acid nitric at 100/spl deg/C. The addition of Nb stabilizes the anatase phase to higher temperatures. XRD spectra of the undoped and the Nb-doped samples show that the undoped sample has been almost totally converted to rutile at 600/spl deg/C, meanwhile the doped samples present still a low percentage of rutile phase. Nanocrystalline powders stabilized at 600/spl deg/C with grain sizes of about 17 nm have successfully been synthesized by the addition of Nb with a concentration of 2% at., which appears to be an adequate additive concentration to improve the gas sensor performances, such as it is suggested by the catalytic conversion efficiency experiments performed from FTIR measurements. FTIR absorbance spectra show that catalytic conversion of CO occurs at lower temperatures when niobium is introduced. The electrical response of the films to different concentrations of CO and ethanol has been monitored in dry and wet environments in order to test the influence of humidity in the sensor response. The addition of Nb decreases the working temperature and increases the stability of the layers. Also, large enhancement of the response time is obtained even with lower working temperatures. Moreover, humidity effects on the gas sensor response toward CO and ethanol are less important in Nb-doped samples than in the undoped ones.  相似文献   

15.
This paper presents a capacitive angular-position sensor with a contactless electrically floating conductive rotor and an interface electronic circuit that is designed to maximize the performance/cost ratio. The sensor includes two separate and independent measurement sections that sense the same angle and provide redundancy in critical applications. The electronic interface is based on a relaxation oscillator that, for each of the two sections, measures an appropriate quantity that relates capacitance ratio to angular position and provides a dc output voltage that varies ratiometrically with respect to the supply voltage. The sensor was built in a version with /spl plusmn/11/spl deg/ measuring range for each section. Experimental tests showed a linearity better that 1% of the span.  相似文献   

16.
The purpose of this paper is to investigate the selection of an appropriate kernel to be used in a recent robust approach called minimum-entropy estimator (MEE). This MEE estimator is extended to measurement estimation and pdf approximation when /spl rho/(e) is unknown. The entropy criterion is constructed on the basis of a symmetrized kernel estimate /spl rho//sub n,h/(e) of /spl rho/(e). The MEE performance is generally better than the Maximum Likelihood (ML) estimator. The bandwidth selection procedure is a crucial task to assure consistency of kernel estimates. Moreover, recent proposed Hilbert kernels avoid the use of bandwidth, improving the consistency of the kernel estimate. A comparison between results obtained with normal, cosine and Hilbert kernels is presented.  相似文献   

17.
SAW devices operating at the fundamental frequency and the 5th, 7th, 9th, and 11th harmonics have been designed, fabricated, and measured. Devices were fabricated on GaN thin films on sapphire substrates, which were grown via metal organic vapor phase epitaxy (MOVPE). Operating frequencies of 230, 962, 1338, 1720, and 2100 MHz were achieved with devices that had a fundamental wavelength, /spl lambda/(0) = 20 /spl mu/m. Gigahertz operation is realized with relatively large interdigital transducers that do not require complicated submicrometer fabrication techniques. SAW devices fabricated on the GaN/sapphire bilayer have an anisotropic propagation when the wavelength is longer than the GaN film thickness. It is shown that for GaN thin films, where kh(GaN) > 10 (k = 2/spl pi///spl lambda/ and h(GaN) = GaN film thickness), effects of the substrate on the SAW propagation are eliminated. Bulk mode suppression at harmonic operation is also demonstrated.  相似文献   

18.
The authors present a compact high-performance laser-pumped Rubidium atomic frequency standard exploiting the advantages of laser optical pumping for improved stability. The clock is based on an industrial Rb clock with the lamp assembly removed and optically pumped by light from a compact frequency-stabilized laser head. The modification of the buffer gas filling in the clock resonance cell reduces instabilities on medium-term timescales arising from the ac Stark effect and temperature variations. The frequency stability of the demonstrator clock was measured to be better than 4/spl times/10/sup -12//spl tau//sup -1/2/ up to 10/sup 4/ s, limited by the local oscillator (LO) quartz and RF loop electronics. Long-term drifts under atmosphere amount to 2-6/spl times/10/sup -13//day only, comparable to or lower than that for lamp-pumped clocks under similar conditions. Typical signal contrasts lie at around 20%, corresponding to a shot-noise limit for the short-term stability of 2/spl times/10/sup -13//spl tau//sup -1/2/. The results clearly demonstrate the feasibility of a laser-pumped Rb clock reaching <1/spl times/10/sup -12//spl tau//sup -1/2/ in a compact device (< 2 L, 2 kg, 20 W), given the optimization of the implemented techniques. Compact high-performance clocks of this kind are of high interest for space applications such as telecommunications, science missions, and future generations of satellite navigation systems [GPS, global orbiting navigation satellite system (GLONASS), European satellite navigation system (GALILEO)].  相似文献   

19.
In this paper, we report the design, fabrication, and performance of a novel crystal SiGeC infrared sensor with wavelength 8-14 /spl mu/m by bulk micromachining technology for portable far infrared ray (FIR) in rehabilitation system application. The working principle of the sensor is based on the change of thermistor's resistance under the irradiation FIR light. The thermistor in the IR detector is made of Si/sub 0.68/Ge/sub 0.31/C/sub 0.01/ thin films for its large activation energy of 0.21 ev and the temperature coefficient (TCR) of -2.74%, respectively. Finite element method package ANSYS has been employed for analyze of the thermal isolation and stress distribution in the IR detector. The dimension of the microbridge fabricated by anisotropic wet etching is 2000 /spl times/ 2000 /spl times/ 25 /spl mu/m/sup 3/. The developed FIR sensor exhibits the thermal conductance of 1.85 /spl times/ 10/sup -1/ WK/sup -1/ and the heat capacity as 7.4 /spl times/ 10/sup -7/ JK/sup -1/ under air ambient at room temperature. The responsivity is 523 VW/sup -1/ in the waveband 8-14 /spl mu/m with nickel absorber under a bias voltage 1.5 V.  相似文献   

20.
Photonic switches require low-loss polarization-independent phase-shifting elements. In a composite quantum well, a 0.46-mm phase shifter provides a /spl pi//4 phase shift by combining the quantum confined Stark effect (QCSE) and the carrier depletion effect. We investigate whether the discrete energy levels and the high peak absorption in quantum dots (QDs) provide an opportunity for increasing the electro-refraction. The electro-refraction in strained cylindrical InAs-GaAs QDs is explored using a numerical model based on the 4 /spl times/ 4 Luttinger-Kohn Hamiltonian. The excitonic states are calculated by matrix diagonalization with plane-wave basis states. We observe that the QCSE sharply increases with the height of the QD and is also optimized for small-radius QDs. The QCSE in pyramidal QDs is considerably larger than in a box or cylinders. We find a peak electro-refraction of /spl Delta/n=0.35 in cone-shaped pyramidal QDs, which is a factor of 35 larger than in the quantum-well case. Finally, in the waveguide geometry, we find an electro-refraction of 1.3/spl times/10/sup -2/ at a residual QD absorption of 0.15 dB/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号