首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although indoor air pollution (IAP) from solid fuel use in the households of the developing countries is estimated to be one of the main health risks worldwide, there is little knowledge of the actual exposure experienced by large populations. We have developed a method to estimate exposure to PM(10) from IAP for large populations, applied to different demographic groups in China. On a national basis we find that 80%-90% of exposure in the rural population results from IAP. For the urban population the contribution is somewhat lower, about 50%-60%. Average exposure is estimated at 340 microg/m(3) (SD 55) in southern cities, and 440 microg/m(3) (SD 40) in northern cities. For the rural population we find average exposure to be 750 microg/m(3) (SD 100) and 680 microg/m(3) (SD 65) in the south and north respectively. Quite surprisingly our results indicate that the heavily polluted northern provinces, largely dependent on coal and believed to have the population with the largest exposure burden, turn out to have medium exposure when IAP is included. We find that the largest exposure burden is in counties relying heavily on biomass, and that there are only small gender differences in exposure.  相似文献   

2.
There seems to be a discrepancy between current Indoor Air Quality standards and end-users wishes and demands. Indoor air quality can be approached from three points of view: the human, the indoor air of the space and the sources contributing to indoor air pollution. Standards currently in use mainly address the indoor air of the space. “Other or additional” recommendations and guidelines are required to improve indoor air quality. Even though we do not fully understand the mechanisms behind the physical, chemical, physiological and psychological processes, it is still possible to identify the different ways to be taken regulatory, politically–socially (awareness), technically (process and product) and scientifically. Besides the fact that there is an urgent need to involve medicine and neuro-psychology in research to investigate the mechanisms behind dose-response, health effects and interactions between and with the other factors and parameters of the indoor environment and the human body and mind, a holistic approach is required including the sources, the air and last but not least the human beings (occupants) themselves. This paper mainly focuses on the European situation.  相似文献   

3.
Rural areas of developing countries are particularly reliant on biomass for cooking and heating. Women and children in these areas are often exposed to high levels of pollutants from biomass combustion that is associated with a range of respiratory symptoms. Domestic exposure to carbon monoxide (CO) and respirable particles (RSPs) in association with respiratory symptoms among women and children in Zimbabwe was investigated in 48 households. Health status and household characteristics were also recorded. In this study, indoor levels of CO and RSPs exceeded World Health Organization (WHO) air quality guidelines in over 95% of kitchens. The level of indoor air pollutants was associated with the area of kitchen windows and the length of cooking time combined with the level of fire combustion. Prevalence of respiratory symptoms was 94% for women and 77% for children. In addition, women reporting respiratory symptoms were exposed to higher levels of RSPs when compared with those reporting no respiratory symptoms. The study results indicated that levels of indoor air pollutants in rural Zimbabwe may contribute to respiratory symptoms in both women and children. PRACTICAL IMPLICATIONS: Levels of respirable particles and carbon monoxide in kitchens in rural Zimbabwe are unacceptably high and measures to reduce levels should be undertaken. Based on the study findings, recommendations for increasing the area of kitchen windows may be considered as a practical method of reducing indoor air pollutants in rural Zimbabwe.  相似文献   

4.
Indoor air pollution (IAP) from domestic biomass combustion is an important health risk factor, yet direct measurements of personal IAP exposure are scarce. We measured 24-h integrated gravimetric exposure to particles < 2.5 μm in aerodynamic diameter (particulate matter, PM?.?) in 280 adult women and 240 children in rural Yunnan, China. We also measured indoor PM?.? concentrations in a random sample of 44 kitchens. The geometric mean winter PM?.? exposure among adult women was twice that of summer exposure [117 μg/m3 (95% CI: 107, 128) vs. 55 μg/m3 (95% CI: 49, 62)]. Children's geometric mean exposure in summer was 53 μg/m3 (95% CI: 46, 61). Indoor PM?.? concentrations were moderately correlated with women's personal exposure (r=0.58), but not for children. Ventilation during cooking, cookstove maintenance, and kitchen structure were significant predictors of personal PM?.? exposure among women primarily cooking with biomass. These findings can be used to develop exposure assessment models for future epidemiologic research and inform interventions and policies aimed at reducing IAP exposure. PRACTICAL IMPLICATIONS: Our results suggest that reducing overall PM pollution exposure in this population may be best achieved by reducing winter exposure. Behavioral interventions such as increasing ventilation during cooking or encouraging stove cleaning and maintenance may help achieve these reductions.  相似文献   

5.
6.
7.
Zuraimi MS  Tham KW  Chew FT  Ooi PL 《Indoor air》2007,17(4):317-327
This paper reports the effects of ventilation strategies on indoor air quality (IAQ) and respiratory health of children within 104 child care centers (CCCs) in a hot and humid climate. The CCCs were categorized by ventilation strategies: natural (NV), air-conditioned and mechanically ventilated (ACMV), air-conditioned using split units (AC), and hybrid (NV and AC operated intermittently). The concentration levels of IAQ parameters in NV CCCs are characterized by the influence of the outdoors and good dilution of indoor pollutants. The lower ventilation rates in air-conditioned CCCs result in higher concentrations of occupant-related pollutants but lower outdoor pollutant ingress. This study also revealed lower prevalence for most asthma and allergy, and respiratory symptoms in children attending NV CCCs. In multivariate analyses controlled for the effects of confounders, the risk of current rhinitis among children is significantly higher if they attend mechanically ventilated CCCs compared to NV CCCs. Air-conditioned CCCs were also associated with higher adjusted prevalence ratio of severe phlegm and cough symptoms and lower respiratory illness. Finally, children attending CCCs with hybrid ventilation are at high risk for almost all the respiratory symptoms studied. PRACTICAL IMPLICATIONS: This large field study indicates that different ventilation strategies employed by child care centers can cause significant variations in the indoor air quality and prevalence of asthma, allergies and respiratory symptoms of attending children. The higher prevalence rates of allergic and respiratory symptoms among young children, whose immune system is still under-developed, in child care centers, whether fully or partially air-conditioned, suggest that ventilation and plausible growth and propagation mechanisms of allergens and infectious agents be further investigated.  相似文献   

8.
The intake fraction is the attributable pollutant mass inhaled by an exposed population per unit mass released from a source. In this paper, mathematical models are combined with empirical data to explore how intake fraction varies with governing parameters for episodic indoor pollutant releases, such as those from cleaning, cooking, or smoking. Broadly, the intake fraction depends on building-related factors (e.g., ventilation rate), occupant factors (e.g., occupancy), and pollutant dynamic factors (e.g., sorption). In the simple case of the episodic release of a nonreactive pollutant into a well-mixed indoor space with steady occupancy and constant ventilation and breathing rates, the intake fraction is the ratio of the occupants’ volumetric breathing rate to the building's ventilation flow rate. Factors such as incomplete mixing, time-varying occupancy, and sorptive interactions modify this basic relationship.  相似文献   

9.
Poor indoor air quality (IAQ) in schools is related to increased symptom reporting in students. We investigated whether parental worry about school IAQ influences this association. Data came from survey collected from five Finnish primary schools with observed IAQ problems and five control schools. Parents (n = 1868) of primary school students reported worry about IAQ in schools and symptoms of their children. Associations between observed IAQ problems, worry, and five symptom scores (ie, respiratory, lower respiratory, eye, skin, and general symptoms) were analyzed using multivariate logistic regression and mediation analysis. Parents were on average more worried in schools with observed IAQ problems. Observed IAQ problems were strongly associated with increased worry and all symptoms under study (unadjusted ORs ranged between 1.48 [95% CI 1.48‐2.16] and 2.70 [95% CI 1.52‐5.17]). Parental worry was associated with all symptoms (unadjusted ORs ranged between 2.49 [95% CI 1.75‐3.60] and 4.92 [95% CI 2.77‐9.40]). Mediation analyses suggested that parental worry might partially explain the association between observed IAQ problems and symptom reporting (proportion mediated ranged between 67% and 84% for the different symptoms). However, prospective studies are needed to assess causal relationships between observed IAQ problems, worry, and symptom reporting in schools.  相似文献   

10.
A randomized controlled trial was carried out to measure the impact of an intervention on ventilation, indoor air contaminants, and asthma symptoms of children. Eighty‐three asthmatic children living in low‐ventilated homes were followed over 2 years. Several environmental parameters were measured during the summer, fall, and winter. The children were randomized after Year 1 (43 Intervention; 40 Control). The intervention included the installation of either a Heat Recovery Ventilator (HRV) or Energy Recovery Ventilator (ERV). During the fall and winter seasons, there was a significant increase in the mean ventilation rate in the homes of the intervention group. A statistically significant reduction in mean formaldehyde, airborne mold spores, toluene, styrene, limonene, and α‐pinene concentrations was observed in the intervention group. There was no significant group difference in change in the number of days with symptoms per 14 days. However, there was a significant decrease in the proportion of children who experienced any wheezing (≥1 episode) and those with ≥4 episodes in the 12‐month period in the intervention group. This study indicates that improved ventilation reduces air contaminants and may prevent wheezing. Due to lack of power, a bigger study is needed.  相似文献   

11.
Pasanen AL 《Indoor air》2001,11(2):87-98
While the fungal exposure assessment was based on the determination of fungal propagules for a long time, recent progress has led to the development of methodology for other fungal agents, e.g. the fungal cell wall components, metabolites, and allergens, that may be responsible for health effects caused by fungal exposure. This review includes a summary of the sampling techniques and analytical methods that are currently used or are in progress for the fungal exposure assessment. Prospects for the future trends are also discussed. In the future, the development will focus on sampling techniques that allow longer sampling times, a higher sampling efficiency for relevant particle sizes, and better possibilities for a wide range of analyses. In addition, new or modified methodology based on chemical, immunochemical, and molecular biological techniques to measure fungal agents related to health effects will improve the understanding of biological responses caused by fungal exposure.  相似文献   

12.
Naphthalene is a ubiquitous pollutant, and very high concentrations are sometimes encountered indoors when this chemical is used as a pest repellent or deodorant. This study describes the distribution and sources of vapor-phase naphthalene concentrations in four communities in southeast Michigan, USA. Outdoors, naphthalene was measured in the communities and at a near-road site. Indoors, naphthalene levels were characterized in 288 suburban and urban homes. The median outdoor concentration was 0.15 μg/m(3), and a modest contribution from rush-hour traffic was noted. The median indoor long-term concentration was 0.89 μg/m(3), but concentrations were extremely skewed and 14% of homes exceeded 3 μg/m(3), the chronic reference concentration for non-cancer effects, 8% exceeded 10 μg/m(3), and levels reached 200 μg/m(3). The typical excess individual lifetime cancer risk was about 10(-4) and reached 10(-2) in some homes. Important sources include naphthalene's use as a pest repellent and deodorant, migration from attached garages and, to lesser extents, cigarette smoke and vehicle emissions. Excessive use as a repellent caused the highest concentrations. Naphthalene presents high risks in a subset of homes, and policies and actions to reduce exposures, for example, sales bans or restrictions, improved labeling, and consumer education, should be considered. PRACTICAL IMPLICATIONS: Long-term average concentrations of naphthalene in most homes fell into the 0.2-1.7 μg/m(3) range reported as representative in earlier studies. The highly skewed distribution of concentrations results in a subset of homes with elevated concentrations and health risks that greatly exceed US EPA and World Health Organization (WHO) guidelines. The most important indoor source is the use of naphthalene as a pest repellant or deodorant; secondary sources include presence of an attached garage, cigarette smoking, and outdoor sources. House-to-house variation was large, reflecting differences among the residences and naphthalene use practices. Stronger policies and educational efforts are needed to eliminate or modify indoor usage practices of this chemical.  相似文献   

13.
This paper describes the present state and the changes in indoor air pollution levels by Volatile Organic Compounds (VOCs) in houses in Japan, as revealed through measurements of indoor VOC concentrations and investigations on the actual conditions in the residential environment by means of a questionnaire survey covering a total of more than 10,000 newly built houses over six years (from 2000 to 2005). The VOCs initially measured were formaldehyde, toluene, xylene, and ethylbenzene, followed by the subsequent inclusion of styrene and acetaldehyde.  相似文献   

14.
Godwin C  Batterman S 《Indoor air》2007,17(2):109-121
Indoor air quality (IAQ) parameters in 64 elementary and middle school classrooms in Michigan were examined for the purposes of assessing ventilation rates, levels of volatile organic compounds (VOCs) and bioaerosols, air quality differences within and between schools, and emission sources. In each classroom, bioaerosols, VOCs, CO(2), relative humidity, and temperature were monitored over one workweek, and a comprehensive walkthough survey was completed. Ventilation rates were derived from CO(2) and occupancy data. Ventilation was poor in many of the tested classrooms, e.g., CO(2) concentrations often exceeded 1000 ppm and sometimes 3000 ppm. Most VOCs had low concentrations (mean of individual species <4.5 microg/m(3)); bioaerosol concentrations were moderate (<6500 count per m(3) indoors, <41,000 count per m(3) outdoors). The variability of CO(2), VOC, and bioaerosol concentrations within schools exceeded the variability between schools. These findings suggest that none of the sampled rooms were contaminated and that no building-wide contamination sources were present. However, localized IAQ problems might remain in spaces where contaminant sources are concentrated and that are poorly ventilated. PRACTICAL IMPLICATIONS: Indoor air quality (IAQ) is a continuing concern for students, parents, teachers, and school staff, leading to many complaints regarding poor IAQ. Investigations of these complaints often include air sampling, which must be carefully conducted if representative data are to be collected. To better understand sampling results, investigators need to account for the variability of contaminants both within and between schools.  相似文献   

15.
Abstract The aim was to study the respiratory symptoms among children exposed to indoor air molds in a day-care environment in Finland. Two day-care centers with a mold problem and two reference day-care centers were included in the study and the health data of the children were collected with a follow-up study of two periods. A total of 229 children 3-7 years old attended the day-care centers. During the first follow-up period, the children in the two day-care centers with mold problems had a significantly increased risk of sore throat, purulent and non-purulent nasal discharge, nasal congestion, hoarseness and common cold. During the second follow-up period, a significantly increased risk of purulent nasal discharge, nasal congestion, hoarseness and cough was observed. Upper respiratory tract symptoms, at least once during the study period, were more prevalent among the children attending mold-problem day-care centers. The mold-exposed children had such symptoms repeatedly or the symptoms were prolonged. In conclusion, in the mold-problem day-care centers, overall morbidity for respiratory symptoms and for common cold increased in comparison with the reference day-care centers.  相似文献   

16.
Indoor air pollution (IAP) is a recognized risk factor for various diseases. This paper examines the role of indoor solid fuel exposure in the risk of mycobacterium tuberculosis (TB) in Delhi Metropolitan, India. Using a cross-sectional design, subjects were screened for a history of active TB and lifelong exposure to IAP sources, such as solid fuel burning and kerosene. The TB prevalence rate in the study area was 1117 per 100 000 population. Every year, increase in solid fuel exposure was associated with a three percent higher likelihood of a history of active TB. Subjects exposed to solid fuel and kerosene use for both heating home and cooking showed significant associations with TB. Age, household expenditure (a proxy of income), lung function, and smoking also showed significant associations with TB. Smokers and solid fuel–exposed subjects were four times more likely to have a history of active TB than non-smoker and unexposed subjects. These finding calls strategies to mitigate solid fuel exposure, such as use of clean cookstove and ventilation, to mitigate the risk of TB which aligns with the United Nations’ goal of “End TB by 2030.”  相似文献   

17.
Abstract This study deals with the modeling of air pollution in apartments from laboratory measurements of source strengths, using formaldehyde and Total Volatile Organic Compounds (TVOCs) as model pollutants. The sources in two test apartments were grouped into two: building-related sources and occupant-related sources. The measured source strengths and ventilation rates were used for the prediction of concentrations expected in the apartments. These predictions were compared to measurements in the apartment over 12 months. The conclusions were that the model predictions based on emission rates measured in the laboratory can be used to predict the long-term concentration of the two model pollutants in the apartments. Considering the measured differences in ventilation between the apartments, an occupant emission rate of between 0.2 and 0.3 mg/h/kg body weight could be estimated. Based on previous suggested limits of acceptable exposures of humans to VOCs, an acceptable average emission rate of VOCs from building materials in general was estimated to be about 30 (μ/m2/h. The modeling showed that during the first 200 days, building materials dominated the emissions. After this, sources relating to the occupants dominated. On average about half of the VOC pollution originated from the building materials.  相似文献   

18.
Lung SC  Kao MC  Hu SC 《Indoor air》2003,13(2):194-199
Burning incense to worship Gods and ancestors is a traditional practice prevalent in Asian societies. This work investigated indoor PM10 concentrations resulting from incense burning in household environments under two conditions: closed and ventilated. The exposure concentrations of particle-bound polycyclic aromatic hydrocarbons (PAHs) were estimated. The factors of potential exposure were also evaluated. Under both conditions, samples were taken at three locations: 0.3, 3.5 and 7 m away from the altar during three periods: incense burning, the first 3 h, and the 4-6 h after cessation of combustion. PAH concentrations of incense smoke were assessed in the laboratory. Personal environment monitors were used as sampling instruments. The results showed a significant contribution of incense burning to indoor PM10 and particulate PAH concentrations. PM10 concentrations near the altar during incense burning were 723 and 178 microg/m3, more than nine and 1.6 times background levels, under closed and ventilated conditions, respectively. Exposure concentrations of particle-bound PAHs were 0.088-0.45 microg/m3 during incense burning. On average, PM10 and associated PAH concentrations were about 371 and 0.23 microg/m3 lower, respectively, in ventilated environments compared with closed conditions. Concentrations were elevated for at least 6 h under closed conditions.  相似文献   

19.
20.
There are limited data describing pollutant levels inside homes that burn solid fuel within developed country settings with most studies describing test conditions or the effect of interventions. This study recruited homes in Ireland and Scotland where open combustion processes take place. Open combustion was classified as coal, peat, or wood fuel burning, use of a gas cooker or stove, or where there is at least one resident smoker. Twenty-four-hour data on airborne concentrations of particulate matter<2.5 μm in size (PM2.5), carbon monoxide (CO), endotoxin in inhalable dust and carbon dioxide (CO2), together with 2-3 week averaged concentrations of nitrogen dioxide (NO2) were collected in 100 houses during the winter and spring of 2009-2010. The geometric mean of the 24-h time-weighted-average (TWA) PM2.5 concentration was highest in homes with resident smokers (99 μg/m3--much higher than the WHO 24-h guidance value of 25 μg/m3). Lower geometric mean 24-h TWA levels were found in homes that burned coal (7 μg/m3) or wood (6 μg/m3) and in homes with gas cookers (7 μg/m3). In peat-burning homes, the average 24-h PM2.5 level recorded was 11 μg/m3. Airborne endotoxin, CO, CO2, and NO2 concentrations were generally within indoor air quality guidance levels. PRACTICAL IMPLICATIONS: Little is known about indoor air quality (IAQ) in homes that burn solid or fossil-derived fuels in economically developed countries. Recent legislative changes have moved to improve IAQ at work and in enclosed public places, but there remains a real need to begin the process of quantifying the health burden that arises from indoor air pollution within domestic environments. This study demonstrates that homes in Scotland and Ireland that burn solid fuels or gas for heating and cooking have concentrations of air pollutants generally within guideline levels. Homes where combustion of cigarettes takes place have much poorer air quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号