首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文报导了用光纤布拉格光栅和长周期光栅结合的传感器系统对油气井下应力和测试实现同时在线检测。实验中用一宽带半导体激光器驱动一损耗中心波长为λLP=1550nm的长周期光栅和两个反射中心波长分别为λB1=1540nm和λB3=1560nm的光纤布拉格光栅。信息处理部分采用光纤平面法-珀滤波器进行波长扫描测量。  相似文献   

2.
根据一阶光学微分器的传递函数,理论分析了均匀 长周期光纤光栅(LPFG)作为一阶瞬态光学微分器应满足的条件。周期压力产生的LPFG能够通 过压力的控制加强光栅的模式耦合,因而得到大的光栅谐 振损耗,实验证明了周期压力在细径光纤上产生的LPFG能够产生大于50dB的谐振损耗。数值模拟结果表明,此光栅光 学微分器能够高精度地完成对高斯脉冲的微分运算,在超快全光信号处理、飞秒脉冲整形和 任意光脉冲产生等领域中有宽广的应用前景。  相似文献   

3.
具有温度补偿的LPFG功率解调系统的设计与实现   总被引:1,自引:1,他引:0  
传统的利用光纤Bragg光栅(FBG)反射光作为长周期 光纤光栅(LPFG)入射光的解调方式,无法避免温度的影响。本文提出了一种具有温度补偿功 能的LPFG功率解调方案,将FBG的Bragg波长由压电陶瓷(PZT)的驱动电压控制,使得FBG谐振 波长始终跟随LPFG谐振波长, 以此抵消温度对传统功率解调中的影响。这种解调方案适用于LPFG透射光谱随物理量变化谱 形也发生变化的传感,如微 弯、横向负载等特性。利用本系统对LPFG的横向负载特性进行试验,结果表明,采用此解调 方案获得的实验数据具有与 光谱仪相同的功率变化趋势,能够始终监测LPFG的谐振峰幅值,实现温度补偿的功率解调, 更适合于动态解调。对LPFG 的温度特性进行功率解调实验,结果也验证了解调系统具有温度补偿功能。  相似文献   

4.
长周期光纤光栅(LPFG)对温度、应变、液体浓度等外界环境变化的敏感度要远高于光纤布拉格光栅(FBG),在传感领域具有广泛的应用前景。然而LPFG的传感信号解调技术尚不成熟,大大制约了LPFG在传感领域的应用。针对现有LPFG传感信号的解调方法进行分析与评述,着重介绍了基于边沿滤波技术、法布里-珀罗(F-P)腔扫描滤波技术和阵列波导光栅(AWG)技术的几种解调方案,并对各个方案在解调精度、速度、成本等方面进行了比较与分析。此外,介绍了实现LPFG复用解调的方法,并在总结已有技术优缺点的基础上对LPFG信号解调技术的发展趋势进行了展望。  相似文献   

5.
长周期光纤光栅在通讯与传感领域有着广泛的应用,成为目前研究的热点之一。该文主要介绍了长周期光纤光栅在传感领域的最新研究进展。  相似文献   

6.
A novel temperature-sensitive mechanical long period fiber grating (LPFG) fabricated utilizing the photo-elastic effect is proposed. Our proposed LPFG consists of a telecommunication optical fiber, a metric screw, and the heat-shrinkable tube, which are commercially available. The heat-shrinkable tube and the metric screw are used to obtain the grating along the single-mode fiber. The gratings are achieved by pressing the optical fiber between the heat-shrinkable tube and the metric screw due to the contractive force of its tube. By changing the temperature, the resonance loss is tuned due to the thermal expansion of the heat-shrinkable tube. Operating mechanism of thermally tunable characteristics of our LPFG are also described from a viewpoint of the coupling coefficient.  相似文献   

7.
半腐蚀长周期光纤光栅光谱特性研究   总被引:1,自引:0,他引:1  
赵洪霞  程培红  鲍吉龙  沈鸿康  李磊  杜惠舰 《中国激光》2012,39(12):1205005-131
基于长周期光纤光栅(LPFG)包层有效折射率与包层半径的良好相关性,提出一种半腐蚀长周期光纤光栅的新颖设计。将一根长周期光纤光栅分成等长的两部分,用HF酸腐蚀其中的一半区域,此时整根LPFG可看成具有不同谐振波长的两个半长度LPFG的级联。利用传输矩阵方法和三层介质光纤模型的色散方程分析了该种LPFG的光谱特性:随着腐蚀段包层半径的减小,两个分裂峰谐振波长之间距离增大,且模式越高间距越大。同时实现了应变和温度的同步测量,得到应变和温度的传感精度分别为±8.9με和1.4℃。因此半腐蚀LPFG传感器可为解决LPFG交叉敏感问题提供有效方法。  相似文献   

8.
将长周期光纤光栅(LPFG)粘贴于试件上构成光纤光栅型智能结构,研究了当试件受到垂直周期力载荷而发生弯曲并随之振动时LPFG的动态响应特性.利用光纤布拉格光栅(FBG)的反射特性获得确定波长处的窄带光作为LPFG的入射光源,通过对固定波长处的光功率探测,实现对试件从2~2 000 Hz范围内的振动监测.由实验采集到的振动信号时域波形及其频谱表明,基于弯曲的LPFG振动传感器具有很好的动态响应特性,其频谱与激振信号频率完全吻合,能够应用于智能材料与结构的健康监测.  相似文献   

9.
基于LPFG滤噪和混合放大的长距离FBG传感器系统   总被引:1,自引:1,他引:1  
设计的基于长周期光纤光栅(LPFG)滤噪和掺Er光纤(EDF)/喇曼混合放大的长距离光纤布拉格光栅(FBG)传感器系统,不但优化了系统的信噪比(SNR),而且使传感距离提高到50 km.该系统以高功率扫描激光器作为传感光源和解调系统,加入的LPFG减小了双向喇曼放大的自发辐射(ASE)噪声和FBG后向反射噪声,同时双环形器的EDF结构利用剩余的泵浦功率产生ASE光和放大传感信号,为后端FBG提供了光源以及提高了后端FBG的SNR.带LPFG的混合放大与EDF/喇漫混合放大相比,实验表明,FBG 1和FBG 2的SNR分别提高了4.40 dB和4.38 dB,而且分布在50 km光纤上的4个FBG均获得了大于15 dB的SNR.  相似文献   

10.
长周期光纤光栅对结构参数的敏感特性   总被引:1,自引:0,他引:1  
基于模式耦合理论,对影响长周期光纤光栅(LPFG)光谱特性的各种物理结构参数进行了研究,得到LPFG光谱特性响应的一系列定量或定性的规律。利用紫外线,通过振幅掩模法曝光H载掺Ge光纤制作了两根LPFG,写入的光栅长度分别为3.0 cm和4.5 cm,测得温度灵敏度分别为0.044 6 nm/℃和0.059 4 nm/℃...  相似文献   

11.
A long-period fiber grating (LPFG) was inscribed in a single-mode fiber and was spliced with a ytterbium (Yb)-doped double-clad fiber in order to couple pump radiation of the inner cladding into the core in a cladding-pumped fiber laser. The use of an LPFG permits a partial core-pumping scheme in a cladding-pumping fiber laser because a portion of the pump radiation can be coupled to the core by LPFG. The enhancement of the pump absorption of a Yb-doped cladding-pumped fiber laser as the result of pump coupling by LPFG was 35%, and the maximal output power increased by up to 55% when a 20-W pump source is used.  相似文献   

12.
混凝土中基于预埋式LPFG波长解调的耐久性健康监测   总被引:3,自引:3,他引:0  
为了实现混凝土结构的耐久性健康监测,提出基于长周期光纤光栅(LPFG)折射率特性,将LPFG预埋入混凝土结构中,通过对LPFG的波长解调,实现钢筋锈蚀监测。钢筋发生锈蚀后,钢筋钝化层表面附近Cl-浓度的改变将影响钢筋周围混凝土的折射率,对LPFG进行波长解调并进行温度补偿,获知环境折射率变化进而判断钢筋的锈蚀程度。实验结果表明,钢筋锈蚀率达到12.6%时,对应的锈水折射率1.353 6仍小于LPFG可监测到的折射率范围,并实验获得了LPFG谐振波长漂移量与钢筋锈蚀率之间的对应关系。本方法无需化学试剂,全光纤化,能够准确地实现混凝土结构中钢筋锈蚀的早期至中期监测。  相似文献   

13.
将采用化学镀铜膜技术封装的长周期光纤光栅(LPFG)串人环形腔中,设计了一种新颖的波长可调谐掺Er3+光纤激光器(EDFL)。铜镀膜(化学涂镀)的LPFG在激光器环腔中用作带阻滤波器,利用恒电流源调节LPFG所处温度场,影响LPFG透射谱,改变激光器环形腔增益最高点,实现输出激光波长的可调谐。在LPFG环境温度调谐20...  相似文献   

14.
The transmission characteristics of a Fabry-Pérot (F-P) interferometer based on a fiber Bragg grating (FBG) pair with a built-in long-period fiber grating (LPFG) are theoretically analyzed, and the shift of transmission interference fringe as a function of environmental refractive index is acquired. The influence of the lengths of F-P cavity, LPFG and FBG on the transmission characteristics of the proposed interferometer has been numerically investigated, and the simulation results indicate that the sensitivity of refractive index reaches 2.27 × 10-6 for an optical spectrum analyzer (OSA) with a resolution of 1 pm.  相似文献   

15.
An optical fiber sensor for strain and temperature measurement based on long period fiber grating (LPFG) cascaded with fiber Bragg grating (FBG) structure has been proposed and realized both theoretically and experimentally. Theoretical analysis shows that two microstructures with similar sensitivities cannot be used for double parameters measurement. The LPFG is micromachined by the CO2 laser, and the FBG is micromachined by the excimer laser. For the validation and comparison, two FBGs and one LPFG are cascaded with three transmission valleys, namely FBG1 valley at 1 536.3 nm, LPFG valley at 1 551.2 nm, and FBG2 valley at 1 577.3 nm. The temperature and strain characteristics of the proposed sensor are measured at 45—70 °C and 250—500 με, respectively. The sensitivity matrix is determined by analyzing wavelength shifts and parameter response characterization of three different dips. The proposed optical fiber sensor based on LPFG cascaded with FBG structure can be efficiently used for double parameters measurement with promising application prospect and great research reference value.  相似文献   

16.
A novel long-period fiber grating (LPFG) is edge-written without any destructive damage on the fiber based on the thermal shock and rapid cooling effects of the high-frequency CO2 laser pulses exposure method in this letter. The refractive index disturbance induced by high-frequency CO2 laser pulses mainly occurs in the edge region of the fiber cladding rather than in the fiber core. An edge-written LPFG with a resonant peak of ~18 dB is obtained using a standard telecommunication fiber. The experimental results show that such a novel LPFG structure has much higher refractive index sensitivity over conventional LPFGs side-written, which can be used as a refractive index sensor, or a tunable filter and modulator by controlling the refractive index sensitive film which is coated on the cladding of such an LPFG.  相似文献   

17.
利用两个交替放置的周期性刻槽板对单模光纤(SMF)施力,形成了机械微弯长周期光纤光栅(LPFG)。实验研究了LPFG的偏振相关损耗(PDL)、刻槽板空间周期和压力等参数对透射谱的影响。结果表明,压力可改变LPFG的透射谱特性,最大损耗峰值可达24.6dB;在1551.9nm处,LP13包层模的最大PDL约为7.42dB...  相似文献   

18.
基于长周期光纤光栅的增益平坦滤波器的研制   总被引:1,自引:0,他引:1       下载免费PDF全文
文中主要介绍了用长周期光纤光栅(L PFG) 制作增益平坦滤波器( GFF) 时要注意的一些技术性问题,其中包括光敏光纤的选择、光纤模式的选择、写光栅的曝光强度、波长漂移量的预留。  相似文献   

19.
Based on coupled-mode theory, the eigenvalue equation of five-layered long-period fiber grating (LPFG) sensor with Ag film and gas-sensitive film overlays are firstly studied. The problem of resolving complex eigenvalue equation on five-layered LPFG is analyzed, and the method of resolution is also given. Then the eigenvalue equation of three-layered metal cladding LPFG is analyzed, and the complex transcendental equation is also discussed. The computing result shows that the coupling between the low order EH modes and the core mode is much stronger than that between the low-order HE modes and the core mode.  相似文献   

20.
对级联长周期光纤光栅(C-LPFG)的温度敏感特性进行了理论和实验研究。讨论了C-LPFG的谐振波长温度灵敏度与包层模的阶次、光纤光栅周期的关系,进行了20~80℃温度传感实验,实验结果表明,谐振波长与温度成线性响应,升降温数据的重复性比较好,测得其谐振波长温度灵敏度为0.250 1nm/℃、而相同参数的LPFG所测得的谐振波长温度灵敏度为0.131nm/℃。表明,C-LPFG的温度灵敏度远高于同样参数的LPFG。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号