共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
相变微胶囊流体因相变潜热大和粒子之间的微对流效应,具有载热密度大,传热温差小的特点,在传热方面具有独特的优势。但其低导热率和高粘度限制了其应用范围。基于微胶囊流体在微通道内不同流动状态下的传热性能及强化微胶囊流体传热方面进行研究进展介绍,并分析总结微胶囊流体在暖通空调及相关领域的应用进展。 相似文献
3.
几何尺寸对矩形微通道液体流动和传热性能的影响 总被引:5,自引:0,他引:5
基于连续介质方法数值研究液体在不同几何结构微通道中的流动和传热性能。在相同热边界条件下,通过比较水力直径、通道长度和宽高比等几何参数对液体微流动的影响,得到各参数对泊肃叶数(Po)和努塞尔数(Nu)的影响关系。研究发现,截面宽高比越大,Po数越小,且雷诺数对泊肃叶数基本无影响;雷诺数(Re)小于500情况下,水力直径小于0.545 mm时,Po数随水力直径减小而减小,水力直径大于0.545 mm时,水力直径变化对Po数基本无影响;Po数不随通道长度变化而变化,但略受流动雷诺数影响;在Re=20~1 800时,Nu数正比于水力直径和宽高比,但是通道长度对Nu数的作用受流动Re数的影响;在通道材料和流动介质相同的条件下,Nu数和Re数之间的关系受通道几何参数的影响,并且拟合得到其关系式。 相似文献
4.
5.
《机械科学与技术》2017,(3):442-447
针对正弦表面粗糙元对微通道内幂律流体电渗流(EOF)流动特性的影响,建立了二维平板粗糙微通道内幂律流体EOF的Poisson-Nernst-Planck(PNP)数学模型,采用有限元法耦合求解双电层(EDL)电势的Poisson方程、离子输运的Nernst-Planck方程、幂律流体流动的Cauchy动量方程以及本构方程。在对PNP模型验证之后,研究了正弦粗糙元高度、频率对幂律流体壁面EDL电势分布以及EOF流量的影响。模拟结果表明:正弦粗糙元对近壁面EDL电势、外加电场电势、EOF速度矢量分布有较大影响;粗糙元波谷处EDL电势随着粗糙元相对高度或频率的增加而增大,波峰处反之;幂律流体EOF流量随着粗糙元相对高度的增加而单调减小,随粗糙元频率的增加先减小后增大,且在粗糙元频率为2.2时EOF流量最小;特别地,流体幂律指数越小,其受粗糙元高度或频率的影响越大。 相似文献
6.
7.
以超临界二氧化碳(S-CO_2)为工质,对其在Zig Zag半圆形横截面微通道内湍流状态下流动传热性能进行数值计算,分析了Zig Zag角度θ、单位周期流道轴向长度P对传热与流动阻力的影响。结果表明,流体在Zig Zag微通道内流动,在流道拐弯处有旋涡产生,导致流通面积减少,流体主流速度急剧增大并冲刷换热壁面,使边界层减薄或破坏,并且该位置附近湍动能急剧增大,增强了流体的扰动与混合,促进了能量传递,强化了换热;随着Zig Zag角度θ增大,微通道内传热性能提高而流动阻力急剧增大;随着单位周期流道轴向长度P增大,传热性能与流动阻力均下降;在文中所述计算条件下,θ=15°,P=15 mm时Zig Zag微通道内S-CO_2耦合传热综合传热性能最优。 相似文献
8.
9.
为了研究微通道壁面随机粗糙度对流体流动和传质特性的影响,采用随机排布准则构建具有典型粗糙元类型的随机粗糙微通道壁面,利用有限元方法分析壁面随机粗糙度对流速、压降、流动阻力和传质性能的影响,并给出粗糙微通道内部Poiseuille数和分子传质扩散的近似变化规律。结果表明,流体在粗糙微通道近壁面区域和主流区的流速差异较大,近壁面区域流动分离现象明显;与光滑微通道相比,粗糙微通道内部各位置的压降和Poiseuille数沿着流动方向呈近似线性增大趋势;微通道壁面粗糙度的存在可以强化流体分子的传质扩散速率,但受粗糙度类型和相对粗糙度的影响较大。 相似文献
10.
11.
双电层效应对压力驱动微流体流动及传热的影响 总被引:1,自引:0,他引:1
在非对称壁面zeta电势及热通量边界条件下,研究双电层效应对平行微流道内压力驱动微流体流动及传热特性的影响.建立微流道内压力驱动流体的数学模型,双电层电势分布、流体流动及传热特性分别由Poisson-Boltzmann方程,修正的N-S方程,能量方程进行描述,对三个方程进行求解并得到微流道内电势,速度及温度分布的解析解.详细讨论动电参数、壁面zeta电势、上下壁面zeta电势比及热通量比等因素对电势场、流场、温度场及微流体传热性能的影响.结果表明,壁面zeta电势会影响微流道内电势分布,流动电势的改变会影响速度分布,进而影响微流道的温度分布与传热性能.在微尺度下,双电层效应对压力驱动流的影响很明显,与传统的无双电层效应的泊肃叶流相比,其流动及传热特性均有显著差异. 相似文献
12.
《压力容器》2019,(12)
随着科技的发展,微电子设备的散热量越来越大,传统换热器将难以满足其散热需求。微通道散热是一种新型的高效换热技术,其结构紧凑、换热性能突出、运行安全可靠的特点引起国内外学术界和工业界的广泛关注。试验技术存在对换热装置加工工艺和测量仪器精度的高要求,成本高、准备周期长;数值模拟技术成本低、计算周期短,探索微通道内单相和气液两相流动换热特性更为便捷,其优势也日益突显。详细介绍了针对微通道换热器的传热流动数值模拟研究方法,对比分析了包含LBM模拟方法和VOF气液两相流模型在内的典型数值方法,并总结了数值模拟在微通道单相换热特性、气液两相换热特性和临界热流密度方面的研究进展。 相似文献
13.
14.
基于Poisson-Boltzmann方程、修正的Cauchy动量方程和能量方程,对双电层作用下幂律流体在正弦粗糙微通道中的流动和传热问题,建立模型控制方程组,并且使用高精度紧致差分格式进行数值模拟。然后,计算了不同幂律指数和粗糙度下的速度和温度。进一步研究了幂律指数和粗糙度对通道阻力系数、平均Nusselt数和能效比的影响。结果表明:幂律指数越小,流动阻力越小且能效比越高;增加粗糙度,流动阻力上升且传热性能增强,可在一定范围内提高能效比。 相似文献
15.
目前换热器正朝着结构紧凑、小型化方向发展,换热器的管束细化使管外流场向过渡流状态转变。为了提高换热器的换热效率,采用基于复合网格系统的计算方法,建立了内插串列双圆柱对壁面强化传热模型并进行实验验证,通过数值分析研究过渡流状态下圆柱距壁面的不同间距比(C/D)对壁面传热特性的影响,以期优化圆柱下游壁面的流动传热特性。研究结果表明:近壁插入圆柱可强化圆柱下游处的壁面传热;不同C/D值对壁面的传热强化效果有显著影响,壁面的传热强化效果随C/D的增大而减小,在加工工艺条件允许的情况下应尽量使被插圆柱靠近壁面,这为过渡流下换热器的研究提供了参考。 相似文献
16.
提出一种新型微小型平板毛细抽吸两相流体回路(Capillary pumped loop,CPL)的蒸发器结构,使其能够适应高热流密度散热的要求。分析蒸发器由于微型化后侧壁导热对系统传热能力的影响。建立新型蒸发器毛细多孔芯内的传热传质数学模型和液体补偿腔的流动与传热模型以及蒸汽槽道和金属外壁区域的导热模型,并用SIMPLE算法对蒸发器进行整场耦合求解。数值结果表明,工质蒸发发生在多孔芯上表面以及侧壁附近,采用热导率较大的铝外壁时,蒸发器加热表面的温度水平较低且温度均匀性较好,但侧壁导热的影响导致CPL的传热能力不高。外壁采用热导率较小的不锈钢可以明显提高CPL的传热极限能力,但同时却较大地增加了加热表面的温度水平以及不均匀性。采用组合结构的蒸发器一方面可以提高系统的传热能力,同时降低了加热表面的温度水平和温度梯度。 相似文献
17.
采用经过实验验证的数值模型研究了周期性射流冲击下的流场对传热强化的影响。根据不同波形(正弦波、三角形波和矩形波)规律变化的射流对平板的冲击会产生不同的传热特性,研究得到了滞止点处的温度、传热系数和湍流强度随时间变化的规律。研究结果表明:当正弦波射流、三角形波射流的信号处于上升阶段时,湍流强度在稍有延迟后会产生一个瞬时的增强,可对强化传热起到促进作用,但在它们随后的波形变化中湍流强度仅有缓慢的升降,矩形波射流在信号发生阶跃变化时,会产生湍流强度的脉冲增强,尤其是在信号跃降时产生的瞬时脉冲增强比信号跃升时产生的脉冲增强更大,可有效强化传热;远离滞止点的流场的周期性波动仍然存在,但幅值大大减小,矩形波射流的平均速度大于其他波形射流的速度。 相似文献
18.
低温贮槽受到环境影响,外界热量会不可避免地传入低温贮槽内部,其日蒸发率直接关系到贮槽投产后的经济效益。行业标准JB/T 9077-1999《粉末普通绝热贮槽》中按照有效容积,分别给出了充满率、绝热厚度、日蒸发率等重要指标,通过计算机运算,分析了这些因素对传热的影响,及其与贮槽结构设计之间的关系,对规范中关于绝热厚度的规定进行了解读分析,同时探讨了充满率规定值存在的问题;并提出了如何提高贮槽费效比的设计思路。 相似文献