首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过响应面法建立了粉煤灰页岩烧结砖工艺参数与烧成砖性能指标之间的函数关系,并对粉煤灰页岩烧结砖单工艺目标和综合工艺目标进行了优化。粉煤灰页岩烧结砖单工艺目标优化值为:抗压强度12.0397MPa、透水率25.8377%、烧成收缩率3.33878%。综合工艺目标下的最佳工艺参数为粉煤灰掺量A=72.37%,烧结温度B=1050℃,保温时间C=8.04h;此时,抗压强度为11.934MPa,透水率为25.8837%,烧成收缩率为3.42586%。  相似文献   

2.
以水基钻井岩屑(水基钻屑)为原料替代部分页岩制备烧结砖,分析了水基钻屑的化学成分、矿物组成以及热重性能,通过单因素实验确定了水基钻屑掺量、烧结温度、保温时间对烧结砖抗压强度、吸水率、体积密度、线性收缩率等的影响。结果表明,在水基钻屑掺量20%,烧结温度1000℃,保温时间2 h的情况下制得的烧结砖抗压强度为20.34 MPa,吸水率为17.08%,体积密度1.764 g/cm3,线性收缩率3.32%。XRD与SEM分析发现,水基钻井岩屑因为石英含量较少,物理性能会随着其掺量增大而显著降低。烧结温度过高和保温时间过长也会导致烧结砖过烧现象的发生,体现在微观上液相大量增加,宏观上则表现为体积密度、抗压强度降低以及吸水率、线性收缩率增大。  相似文献   

3.
为了解决赤泥堆积问题,采用赤泥、粉煤灰为原料制备烧结砖.研究了不同原料配比,不同成型压力以及在不同烧结温度和保温时间下的赤泥-粉煤灰烧结砖的抗压强度.通过单因素实验得出,赤泥掺量为70%,成型压力为19 MPa,烧结温度为1050℃,保温2 h时制得的烧结砖抗压强度最高,可达到20.1 MPa,且其他性能均符合GB/T...  相似文献   

4.
《砖瓦》2021,(5)
我国河湖众多,但淤泥的富集对河湖水环境造成严重影响。利用淤泥制备绿色建材,是重要的发展方向之一。以淤泥:金尾矿=80%:20%(重量比)制备烧结砖小样,其成型和干燥性能良好,焙烧温度为1010℃。利用正交试验研究工艺参数对烧结砖试件性能的影响,结果表明:最佳烧成制度为干燥速率15℃/h,烧成速率150℃/h,保温时间60min,其试件的干燥收缩率为4.10%,烧成收缩率0.20%,吸水率为18%,抗压强度可达15.6MPa,且均未出现石灰爆裂。试件的干燥收缩与烧成收缩均较小,各因素对吸水率的影响也较小,对抗压强度的影响较大,影响抗压强度的因素的主次顺序为:保温时间烧成速率干燥速率。  相似文献   

5.
为了实现江河污泥资源化利用,以污泥为原料,通过传统制砖工艺,制备环保节能型烧结砖。采用XRD、XRF和SEM对污泥和烧结砖的相组成、微结构、形貌及化学组成进行表征。研究结果表明,采用污泥制砖的最佳烧结温度为900℃。当污泥含量低于40%时,烧结砖的收缩率低于15%,符合GB 5101—2003《烧结普通砖》要求,且添加适量的骨料有利于提高烧结砖的强度。当原料组成为60%黏土、20%污泥、20%卵石时,所得烧结砖的综合性能最好,其抗压强度可达31.6 MPa,收缩率仅为7.5%。  相似文献   

6.
通过测试植物纤维页岩烧结微孔砖在不同烧成温度以及不同保温时间下的质量损失率、烧成收缩率、抗压强度、显气孔率等性质,分析温度对页岩烧结微孔砖性能的影响规律并确定了适宜页岩烧结微孔砖的最佳烧成制度。试验结果表明:随着烧成温度的升高,抗压强度和显气孔率增大,在950℃时抗压强度达到最高,继续升温,抗压强度反而呈下降趋势;适当的保温时间可以使砖体内部骨架更为坚实,抗压强度有所提高。  相似文献   

7.
以赤泥、粉煤灰、石英砂等为主要原料,掺加一定量的泡沫,经可塑成型、煅烧等工艺制备了一种轻质多孔烧结材料。研究煅烧温度对其抗折、抗压强度、收缩率等性能的影响;利用扫描电子显微镜对其进行微观形貌分析,探讨其烧结机理。结果表明,最佳烧结温度为1150℃,最佳试样的体积密度为691kg/m3,抗压、抗折强度分别为4.2MPa和3.2MPa,导热系数为0.110W/(m·K),烧成收缩率为3.9%。  相似文献   

8.
将页岩与膨润土以不同比例混合,通过抗压强度、烧结收缩率、体积密度、吸水率和显气孔率作为指标,分析了不同的烧结温度及烧结时间对膨润土页岩烧结砖性能的影响。  相似文献   

9.
本研究以煤矸石、高岭土尾矿为主要原料,氢氧化钠为助熔剂,通过一定的成型工艺制成煤矸石/高岭土尾矿烧结砖。塑性指数分析表明高岭土尾矿可以有效地提高原料的塑性指数;原料细度及颗粒级配分析显示原料细度越小,颗粒组成适宜,产品收缩率较小,质量较好;当煤矸石含量为80%,高岭土尾矿含量为20%,烧结温度为1100℃,烧成时间为48h,所制得的烧结砖的抗压强度达到23.7MPa,具有良好的物理机械性能。  相似文献   

10.
以铜仁市锦江淤泥为主要原料,对淤泥-粉煤灰-页岩混合坯体在1100~1160℃下进行烧结,研究了原料配方、烧成温度对混合坯体烧结性能的影响。结果表明,随烧结温度升高,样品烧失率增大,吸水率和气孔率降低,而体积密度和抗折强度增大,在1120~1140℃时达到最大值。7组配方的淤泥-粉煤灰-页岩烧成体的最高抗折强度均高于对比试验中普通黏土烧结体的最高强度(33.34 MPa),表明利用锦江淤泥制备建筑用烧结砖是可行的。  相似文献   

11.
研究了不同粘结剂、原料配比和烧成温度等工艺参数对高掺量粉煤灰烧结砖性能的影响。粉煤灰掺量达80 %的高掺量粉煤灰烧结砖半工业性试验表明 :产品质量达到GB5010 -85中MU15要求 ,综合成本比普通粘土烧结砖低0.01~0.02元/块 ,社会、经济效益显著。高掺量粉煤灰烧结砖所采用的工艺与普通粘土烧结砖相同 ,无需增加设备投资 ,且烧成工艺基本不变 ,易于推广  相似文献   

12.
高含量赤泥烧结砖的研究   总被引:1,自引:0,他引:1  
对不同坯体配方的赤泥烧结砖样品进行物理性能测试,分析了烧结温度和黏土含量对烧结砖的影响。结果表明,以赤泥作为主要原料生产烧结砖是可行的,制得的烧结砖具有烧成温度低、所用赤泥量大的优点,并能得到抗压强度20MPa以上,吸水率18%以下,符合GB 5101-2003《烧结普通砖》要求的赤泥烧结砖。采用黏土20%、赤泥80%的配比既能满足生产要求,又能大量利用赤泥,并且烧成温度比较低,是一种优化方案。  相似文献   

13.
通过对废弃聚苯颗粒(waste polystyrene granule,WPG)燃烧特性的分析,研究了烧成制度对掺WPG的粉煤灰页岩多孔烧结制品性能的影响.结果表明:在WPG燃烧阶段延长烧成时间,有利于烧结过程的进行,试件的尺寸收缩率略有增加;与直接升温到1000℃相比,在WPG挥发分燃烧阶段(380℃)延长烧结时间1h,试件的抗压强度提高了9.91%,在WPG固定碳燃烧阶段(480℃)延长烧结时间1h,试件的抗压强度提高了18.13%;在480℃下延长烧结时间1h的试件其微观结构要优于在380℃下延长烧结时间1h的试件.在480℃下延长烧结时间1h可制备出抗压强度为20.4MPa、密度为1.52g/cm3、显气孔率为39.53%的烧结制品.  相似文献   

14.
《砖瓦》2016,(3)
通过对掺入电解锰渣试样的抗压强度、烧失量、收缩率等性能的测试,分析研究掺入电解锰废渣对烧结砖性能的影响,结果表明:电解锰渣的掺入可大幅度降低试样烧成温度并提高试样抗压强度,在焙烧温度为950℃的条件下,电解锰渣掺量为30%的试样抗压强度可达20.27 MPa。  相似文献   

15.
以煤矸石、粉煤灰和膨润土为原料制备烧结保温砖,研究了合理的焙烧曲线及煤矸石粒径、煤矸石掺量、烧成温度和成型压力对烧结保温砖性能的影响。实验表明,较合理工艺为煤矸石掺量60%、粒径小于60目,烧成温度为950℃,成型压力为8 MPa,可制备出外观良好、无裂纹、无泛霜、综合性能优良的保温砖,其抗压强度为5.69 MPa,导热系数为0.23 W/(m·K),符合GB 26538—2011《烧结保温砖和保温砌块》MU5.0级标准要求。  相似文献   

16.
以油页岩灰大比例代替黏土,进行烧结砖制备研究。考察坯体干基含水率、成型压力、原料配比、烧结温度、保温时间、颗粒级配对烧结砖抗压强度、吸水率、密度、烧失量等性能的影响,结合对烧结砖微观结构的测试分析,确定高掺量页岩灰制备烧结砖最佳工艺条件。结果表明,在页岩灰颗粒级配为1~2 mm占10%、0.5~1 mm占50%、0.5 mm占40%时、黏土与页岩灰质量比为3∶7,成型干基含水率16%、成型压力25~30 MPa,制备的坯体在105℃下干燥12 h,1000~1050℃烧结保温3 h的最佳条件下,可最大限度利用油页岩灰制备强度等级MU30以上的普通烧结砖。  相似文献   

17.
磷渣在粘土烧结砖中的应用研究   总被引:7,自引:0,他引:7  
利用电炉法生产黄磷时排出的磷渣,研制出替代部分粘土或页岩的磷渣烧结剂,制品性能达到GB/T 5101-1998《烧结普通砖》的要求,烧成温度比一般烧结普通砖约降低100℃,研究了磷渣掺量对砖坯的可塑性,干燥敏感性,收缩性的影响及对烧结砖强度,烧成收缩率,吸水率的影响,并对磷渣提高烧结砖强度的机理进行了分析。  相似文献   

18.
以江苏氿江淤泥为部分原料制备淤泥烧结砖,研究不同淤泥掺量、不同成型压力、不同烧结温度下淤泥烧结砖的物理力学性能。试验结果表明,淤泥掺量与烧结砖抗压强度呈负相关,与吸水率呈正相关;得出最优工艺参数为:淤泥掺量30%、成型压力8 MPa、烧结温度1050℃。对最佳工艺参数下制得烧结砖进行环境安全评价,高温焙烧可使淤泥中重金属得到有效固化,砖体放射性符合GB 5085.3—2007《危险废物鉴别标准浸出毒性鉴别》要求,不会对环境造成危害。  相似文献   

19.
在对鄂西赤铁矿尾矿的基本特性进行综合分析的基础上,以该尾矿为主要原料添加少量的黏土、粉煤灰进行复配制备烧结砖,进行尾矿烧结砖的制备工艺及其性能研究,并对烧结砖的微观结构和性能的形成机理进行探讨.结果表明,采用半干压成型,在成型水分15%、成型压力20 MPa、干燥温度105℃下干燥6~8 h、烧成温度1000 ℃保温2 h的条件下,可制得尾矿掺量高达84%的烧结砖,其物理力学性能及耐久性均达到GB/T 5101-2003<烧结普通砖>中MU20的要求.  相似文献   

20.
采用污泥-煤矸石-页岩三元体系制备烧结砖,分析了污泥粒径、掺量对烧结砖坯体混合料塑性指数的影响,研究了污泥掺量和烧成制度对烧结砖抗压强度、体积密度、干燥收缩、吸水率和泛霜的影响;选取Cu、Cr、Pb三种代表性重金属,超量掺入污泥页岩混合料中,研究烧结过程中的重金属挥发和对重金属的固化能力。结果表明:掺加污泥能够改善泥料的可塑性,可以降低烧结砖的体积密度,但会增加烧结砖的干燥收缩;掺入污泥会使烧成试样出现泛霜,掺量越多泛霜程度越严重;当污泥掺量为18%时,烧结温度为1050℃,保温时间为6h,烧结砖的性能最佳,且污泥中的重金属可有效固溶于材料内部,其总Cu、总Cr、总Pb浸出浓度远低于安全标准控制值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号