首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于有限元分析软件ABAQUS建立了2024铝合金随机多弹丸喷丸的三维有限元模型,首先模拟了不同弹丸数量下残余应力场的变化特征,然后分析了弹丸速度和直径对残余应力场的影响;最后进行了试验验证。结果表明:弹丸数量大于80颗后,残余应力基本不再变化;增加弹丸速度可显著提高残余压应力层的深度、各深度残余压应力值以及残余压应力的峰值,但对残余压应力峰值的深度影响不大;增大弹丸直径对0~0.1 mm深度内的残余压应力值影响不大,对残余压应力层的深度、0.1mm深度以下的残余压应力值、残余压应力峰值及残余压应力峰值的深度提高明显;有限元模拟结果与试验结果接近,说明模拟结果准确。  相似文献   

2.
针对前混合水射流的液固湍动特性与喷丸过程多重非线性耦合作用行为,提供一种射流喷丸强化残余应力场的有限元分析法。采用液固两相流动理论与计算流体动力学方法分析喷嘴内流特性,建立射流多弹丸喷丸模型;基于弹丸速度冲击载荷加载制度,利用多线性各向同性强化弹塑性模型,应用动态接触对称罚函数法,运用ABAQUS软件模拟不同弹丸数量作用下射流喷丸在45钢材料表层产生的残余应力场,获得残余应力场的分布规律及残余应力沿深度的变化规律;得出射流喷嘴内流呈均质流流型,不同弹丸数量射流喷丸在材料表层产生的径向残余应力沿深度的变化规律相同,但在材料表面产生的径向残余压应力值受喷丸模型影响较大,对弹丸分三层排列、相邻弹丸之间径向和周向中心距离均为弹丸半径的多弹丸喷丸模型,数值模拟获得的表面径向残余压应力值与射流喷丸试验数据基本吻合。  相似文献   

3.
基于Abaqus的喷丸满覆盖率实现及残余应力场预测   总被引:1,自引:0,他引:1  
提出单弹丸冲击计算弹痕直径和多弹丸顺序冲击计算残余应力场的有限元模型,针对40Cr钢在有限元分析软件Abaqus中准确模拟喷丸覆盖率并计算残余应力场。与常用的经验方程、解析模型预测结果比较,有限元模型预测残余应力场的效果更好,对表面残余压应力、最大残余压应力和压应力场深度的预测误差在10%以内,对最大残余压应力所在位置的预测具有较好的分析结果。实验表明,该有限元模型有较好的工程指导意义。  相似文献   

4.
基于ANSYS/LS-DYNA的受控喷丸工艺过程仿真   总被引:1,自引:0,他引:1  
将喷丸过程简化为丸粒撞击工件的模型,丸粒看作刚性体,运用ANSYS/LS-DYNA软件进行了数值模拟,分析了覆盖率对残余压应力分布的影响,得出在不完整喷丸覆盖率下工件表面会产生残余拉应力.在单个丸粒模型中,将丸粒的材料改为塑性硬化材料,分析丸粒的速度对残余压应力分布的影响,得出丸粒的材料参数一定时,存在最优喷丸速度,丸速过高会导致丸粒的变形能增加,而使工件表层的最大压应力值和应力层深度下降.  相似文献   

5.
弹丸束喷丸有限元模型数值模拟及试验研究   总被引:16,自引:3,他引:16  
喷丸工艺是一种有效提高工件表面疲劳抗力的表面处理工艺,被广泛应用在航空、汽车、动力机械等重要领域。喷丸数值模拟是制订喷丸工艺方案、评估喷丸后工件表面疲劳抗力的主要理论工具。目前,现有的喷丸数值模型主要有单弹丸模型、阵列弹丸模型等形式,在这些模型中,弹丸的撞击位置是固定的,忽略了真实的喷丸过程中弹丸位置的随机性。采用有限元计算软件ABAQUS提供的python语言开发一种弹丸在空间位置随机分布的弹丸束喷丸模型,在此模型基础上研究喷丸工艺参数与残余应力间的分布规律,进一步讨论喷丸工艺对工件表面粗糙度的影响,模拟喷丸强度的饱和过程,并通过Q235钢喷丸试验对弹丸束喷丸模型进行验证,为喷丸工艺的精确控制提供了科学依据和理论基础。  相似文献   

6.
采用有限元方法,建立单弹丸有限元模型,对超声喷丸(USP)强化工艺过程进行数值模拟。运用控制变量法,研究弹丸速度、喷射角度对金属表面性能的影响。根据有限元分析结果,绘制应力随层深的关系曲线,求得最大残余应力数值,探索单弹丸的超声喷丸强化工艺的最佳工艺参数。  相似文献   

7.
根据气动辅助超声喷丸强化试验的要求和特点,设计制造了试验用超声变幅杆和气丸混合室以及其他辅助装置,验证了新型喷丸方式的可行性。利用压力测试系统实测弹丸的最大冲击力,应用LS-DYNA软件对单颗弹丸冲击工件的过程进行有限元仿真,对残余压应力仿真结果与理论结果进行对比分析。结果表明:弹丸的实际冲击力与仿真最大压力相当,仿真和接触力学理论得到的残余应力变化趋势相同,仿真结果可以用于对超声喷丸进行初步的预测和分析。  相似文献   

8.
正交试验设计的注塑成型工艺参数多目标优化设计   总被引:2,自引:3,他引:2  
结合正交试验设计和注塑成型模拟软件Moldflow,对不同工艺条件下的注塑成型过程进行模拟分析,并运用模糊数学中的综合评判法,对塑件成型后的体积收缩率变化、表面缩痕指数和最大翘曲变形量三个目标值进行综合评判,得到综合评分.通过对综合评分的极差分析,确定模具温度、熔体温度、注塑时间、保压参数、冷却时间等工艺参数对综合评分的影响程度,并绘制因素水平影响趋势图,分析得出最优的注塑工艺参数组合方案,并对该工艺组合方案进行模拟验证.  相似文献   

9.
研究了不同弹丸及喷丸参数对喷丸后TC4钛合金表面形貌、表面塑性变形程度、残余压应力场和疲劳寿命的影响。结果表明:与铸钢弹丸相比,陶瓷弹丸喷丸强化后TC4钛合金表面的起伏程度变化不大,但能有效地覆盖加工刀痕;随喷丸压力增大和喷丸时间延长,试样表面的累积塑性变形先快速增大后趋于饱和;当喷丸压力达到0.25 MPa、铸钢弹丸喷丸时间大于40 s或陶瓷弹丸喷丸时间大于80 s时,最大残余压应力可达到610 MPa,残余压应力场深度超过250μm;两种弹丸喷丸强化后,TC4钛合金的疲劳寿命分别可提高10倍和20倍以上。  相似文献   

10.
为研究气动喷丸和超声喷丸两种不同喷丸工艺对2024-T351铝合金表面完整性的影响,在A型阿尔明试片名义弧高值为0.15 mm的喷丸强度下,分别使用气动喷丸和超声喷丸对2024-T351铝合金进行表面喷丸处理,并使用电子扫描显微镜、X射线衍射仪、残余应力分析仪、微观硬度计分析两种喷丸工艺对表面形貌、微观组织结构演变、残余应力、微观硬度的影响。研究表明,气动喷丸和超声喷丸均会显著改变材料的表面形貌,超声喷丸可以产生更小的表面粗糙度值。由于弹丸速度较高,气动喷丸会导致更大程度的塑性变形。采用气动喷丸,试件的残余压应力大于超声喷丸,但残余压应力层深度明显较浅。采用超声喷丸,试件会产生更高的微观硬度和更深的硬化层。  相似文献   

11.
采用ANSYS/LS-DYNA有限元软件模拟了在不同弹丸速度和半径下喷丸强化后18Cr2Ni4WA钢的表层残余应力分布,并进行了试验验证。结果表明:18Cr2Ni4WA钢表层中最大残余压应力随着弹丸速度或弹丸半径的增加均先增大后减小,当弹丸速度为120m·s-1、弹丸半径为0.6mm时喷丸强化效果较佳;喷丸后钢表层残余应力分布的模拟结果和试验结果相吻合,证明了模型的准确性。  相似文献   

12.
陶欣荣  王成  钟瑶  周彬  黄海泉  苏奇 《机电工程》2023,(10):1573-1582
在已有的超声喷丸有限元模型中,绝大多数都忽略了弹丸的弹性、塑性变形对数值模拟结果的影响。同时,关于弹丸表面与受喷材料表面之间的摩擦因数对超声喷丸数值预测结果的影响规律,目前也鲜有报道。为此,以纯铜试样为研究对象,结合超声喷丸实验和数值模拟过程,研究了摩擦因数与弹丸形变对超声喷丸纯铜的影响规律。首先,基于ABAQUS平台建立了单丸粒超声喷丸三维有限元模型;然后,设计了单丸粒超声喷丸实验,依据实验条件分析了喷丸距离对速度的影响,将实验工况输入仿真模型,并分别从弹丸速度、凹坑形貌两方面比较了实验与仿真结果;最后,分别采用刚性丸、弹性丸、弹塑性丸,在摩擦因数为0.1、0.2、0.3、0.4、0.5的工况下,对纯铜试样进行了超声喷丸数值模拟,对受喷表面的形貌、残余应力进行了分析。研究结果表明:当弹丸与纯铜表面之间的摩擦因数大于0.2时,摩擦因数对超声喷丸纯铜形成的凹坑形貌和残余应力的影响不再显著;超声喷丸纯铜形成的凹坑尺寸、残余压应力深度、最大压应力和表面残余拉应力随弹丸与纯铜之间接触刚度的增大而增大。该研究结果对超声喷丸的数值建模具有重要的指导意义。  相似文献   

13.
对航空发动机涡轮盘采用两种不同弹丸喷丸后,用金相显微镜、表面粗糙度仪、X-350A应力衍射仪、DUH-211(S)动态超微小显微硬度计和SUPPA40高分辨热场发射扫描电镜等设备对1Cr11Ni2W2MoV不锈钢航空发动机涡轮盘喷丸前后表层组织、表面粗糙度、残余应力、超显微硬度及冲击断口等进行对比观测。结果表明:喷丸后表层组织有细化;表面粗糙度值约为未喷丸的10倍;表面残余压应力约为未喷丸的2倍多;表层硬度由表及里呈下降趋势;通过对冲击断口的观察分析可知,喷丸除了对疲劳性能有改善作用外,对材料断裂也有一定的作用。弹丸种类的不同仅在表面残余压应力上有差异体现。  相似文献   

14.
汤亚林  赵久越  唐进元 《机械传动》2020,44(5):18-22,28
喷丸强化除了会对齿轮表面的残余应力场产生影响外,还会改变齿轮表面粗糙度。齿轮齿根处与分度圆处的表面粗糙度会强烈影响其服役性能,因此,研究喷丸过程中齿轮表面粗糙度的演变过程十分必要。为此,建立随机丸粒有限元模型来模拟齿根处与分度圆附近区域的喷丸强化过程,提取冲击区域所有的离散数据用以计算表面粗糙度参数;数值模拟得到的结果与齿轮喷丸后的测试结果基本吻合;并研究了喷丸时间、弹丸大小、冲击速度对齿根处与分度圆附近表面粗糙度参数的影响,从而可以合理地选择喷丸工艺参数,以达到控制齿轮喷丸后表面粗糙度的目的。研究结果表明,在同样的喷丸工艺参数下,分度圆处表面粗糙度R_a值与R_z值明显小于齿根处;随着冲击速度及弹丸直径的增加,齿根处表面粗糙度R_a值、R_z值明显增加且弹丸直径对粗糙度参数的影响大于冲击速度;随着冲击速度及弹丸直径的增加,分度圆表面粗糙度R_a值、R_z值明显增加,R_(mr(-1))值减小,且弹丸直径对粗糙度参数的影响大于冲击速度。  相似文献   

15.
喷丸三维残余应力场的有限元模拟   总被引:13,自引:1,他引:13  
运用大型有限元计算软件ABAQUS建立了模拟喷丸残余应力场的三维有限元模型,预测了在相同喷丸强度下玻璃丸和钢丸两种类型弹丸喷射所产生的残余应力场。模拟过程中,分析了线性减缩积分单元的沙漏参数、材料的应变硬化率、喷丸覆盖率以及初始残余拉应力等因素对304不锈钢靶材残余应力分布的影响。从计算结果可以看出,钢丸喷丸产生的残余压应力层较深,但在高覆盖率时,玻璃喷丸产生的残余压应力的平均值比钢丸喷丸处理后产生的大。在有初始残余拉应力(250 Mpa)存在的情况下,两种类型的喷丸处理均能使304不锈钢靶材表面形成残余压应力层,这说明喷丸工艺可以提高奥氏体不锈钢焊接构件的抗应力腐蚀开裂能力。本研究成果为进一步探讨喷丸强化不锈钢焊接头抗应力腐蚀性能的机理奠定了基础。  相似文献   

16.
运用有限元软件AdvantEdge对7050铝合金材料进行了切削加工仿真模拟,采用单一变量法得到了工件表面残余应力与切削温度随切削参数改变而发生变化的规律。结果表明:工件表层为残余压应力,亚表层为残余拉应力,切削参数对最大残余应力所在深度影响较小,进给量对工件表面的残余应力影响最大,切削速度次之,背吃刀量最小,切削温度随着切削参数的改变也呈现出一定的规律。  相似文献   

17.
水射流喷丸强化残余应力场的有限元模拟   总被引:4,自引:2,他引:2  
针对水射流的高湍动特性与受喷靶体材料复杂的弹塑性形变行为,提供一种水射流喷丸强化残余应力场的有限元分析方法.基于准静态压力分布和非线性轴对称面分布载荷,采用多线性各向同性强化的Mises率不相关弹塑性模型,应用Prandtl-Reuss塑性增量理论及增量初应力法,利用线性斜坡载荷加载制度,运用ANSYS有限元软件模拟不同压力作用下水射流喷丸在2A11铝合金材料表层产生的残余应力场,获得残余应力场的分布规律及残余应力沿层深和径向的变化规律,指出残余应力沿层深分为残余压应力区和残余拉应力区,沿径向分为第Ⅰ残余压应力区、残余拉应力区和第Ⅱ残余压应力区,得到表面残余压应力、表层最大残余压应力、残余压应力层深度随着喷丸压力的增加而增大.为验证有限元模拟的正确性,对喷丸表面残余压应力进行试验验证,结果表明,有限元法计算的表面残余压应力值与试验数据近似吻合.  相似文献   

18.
采用正交试验与模糊数学中的综合评判法相结合,以非球面透镜为研究对象,对不同工艺条件下的注塑压缩成型过程进行模拟分析,对塑件成型后的最大翘曲变形量、平均体积收缩率和翘曲之后折射指数中更改3个目标值进行综合评判,得出综合评分。通过对综合评分进行极差分析,确定熔体温度、模具温度、压缩距离、压缩时间、压缩速度、压缩力和冷却时间7个工艺参数的影响程度,并绘制综合评分趋势图,分析得出最优的注塑压缩工艺参数组合方案,并对该工艺组合方案进行模拟验证。  相似文献   

19.
喷丸强化工艺是将金属或非金属弹丸高速撞击金属构件,使构件表面产生弹塑性变形的过程,这些变形在材料表层产生具有一定厚度的残余压应力层和组织强化层,从而使得构件材料表面得到强化,并最终显著提高构件的疲劳强度。介绍了喷丸强化工艺的基本原理、特点和相关工艺参数,对有限元分析模型:包括弹丸数量、弹丸分布规律和靶材模型的简化程度等几个方面的演变情况进行了分类归纳和比较,总结了喷丸强化工艺参数对残余应力场的影响规律,对未来喷丸强化机理的研究工作进行了展望。  相似文献   

20.
利用AdvantEdge FEM软件对YG6X刀具加工Ti6Al4V合金进行一维和二维超声振动切削仿真,分析超声振动参数对残余应力的影响。模拟仿真表明:一维X向振动时,振动频率和振动幅度对残余应力影响不明显,最大压应力和压应力区深度增大不明显;一维Y向振动时,振动频率越小,残余压应力和压应力区深度越大,振动幅度越大,残余压应力越大,压应力区深度越大;二维振动通过极差分析确定A1B1C3为最佳组合,振动参数对残余应力的影响由大到小依次为Ay>(Fx,Fy)>Ax。结果证明,超声振动切削可以增大工件表层残余应力,改善工件的耐磨性和疲劳强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号