共查询到18条相似文献,搜索用时 51 毫秒
1.
驱动防滑控制是四轮轮毂电机驱动电动汽车主动安全控制关键技术之一。分别从车速估计方法、路面识别方法、驱动防滑控制算法三个方面综述了四轮轮毂电机驱动电动汽车驱动防滑控制的关键技术与难点。通过比较车速估计方法中基于运动学和基于动力学的估计方法的优缺点,明确了基于多方法、多信息融合的估计方法是提高车速估计精度的重要措施。比较了基于试验与基于模型的路面识别算法,分别对路面识别中涉及的路面附着系数估计方法、路面类型识别方法进行了分析,并指出:基于试验的路面识别方法仍需提高对测试环境的鲁棒性,基于模型的识别方法则需提高轮胎模型精度以及不同工况的自适应性。总结了基于滑转率控制和基于电机输出转矩控制的驱动防滑控制策略,对现有驱动防滑控制算法进行了分析,并指出提高算法的适应性和鲁棒性是未来的研究重点。最后对四轮轮毂电机驱动电动汽车驱动防滑关键技术发展方向进行了展望。 相似文献
2.
对汽车操纵稳定性影响因素进行分析,设计适合于四轮独立驱动汽车的稳定性控制策略,充分利用四轮独立驱动汽车每个轮的驱动力可以单独控制的优点,在传统车只能靠制动来改变车轮滑移率的基础上,增加了驱动控制,同时对汽车进行驱动和制动控制,通过仿真实验验证所设计的控制策略的有效性。 相似文献
3.
4.
针对四轮独立驱动电动汽车直线行驶跑偏及行驶稳定性问题,提出驱动转矩协调控制策略。该策略采用分层控制逻辑,上层控制逻辑层负责车速跟随控制、附加横摆力矩计算、驱动防滑控制;下层控制逻辑层负责驱动转矩协调分配。基于车辆动力学软件Carsim和MATLAB/Simulink搭建四轮独立驱动电动汽车协调控制系统仿真模型,在高附着、低附着和对开路面等典型工况进行仿真,结果表明,相比于转矩平均分配及无控制,协调控制策略使车辆横摆角速度保持在0±0.05(°)/s,且车轮滑转率控制在最优滑转率范围内,提高了车辆直驶稳定性。 相似文献
5.
针对传统质心侧偏角估计精度低、实时性差等问题,把四轮独立驱动电动汽车作为研究对象,提出一种基于强跟踪卡尔曼滤波及无迹卡尔曼滤波融合估计的质心侧偏角估计方法。由于汽车在侧向加速度较小时车辆动力学特性基本呈线性变化,此时通过强跟踪卡尔曼滤波快速估计,当汽车侧向加速度较大时车辆动力学特性趋于非线性变化,通过无迹卡尔曼滤波准确估计。最后将两种估计方法的数据融合,完成不同车速不同工况下对车辆质心侧偏角的估计。搭建Simulink-Carsim联合仿真平台对提出的方法进行验证,结果表明该方法在保证估计精度的同时具有较好的实时跟踪效果及鲁棒性。 相似文献
6.
7.
8.
为提高四轮独立驱动系统的驱动力应用效率,提高特种车辆的控制能力、动力性和稳定性,开展了四轮驱动力分配模式的研究。根据实体车辆结构搭建了四轮独立驱动平台物理模型,基于ADAMS软件搭建了虚拟样机模型;通过3种驱动力分配模式下车辆在平直路面匀速行驶状态下的动力学仿真,分析了等转矩和等状态两种驱动力分配模式下的车辆运行状态;以及在车轮不同转矩模式下车辆运动情况。仿真结果表明,驱动转矩的分配比例与质心位置有关,等状态模式在车辆正常行驶情况下性能较好;当左右车辆驱动转矩不同时,车辆跑偏程度主要取决于左右两侧驱动力的差值。 相似文献
9.
针对四轮独立驱动电动汽车转向控制效果与所搭建车辆动力学模型参数紧密相关的问题,提出一种车辆动力学模型参数自校正转向控制系统设计方法。采用递推最小二乘法对车辆动力学模型关键参数进行实时辨识,有效地解决了车辆动力模型参数时变及非线性扰动影响的问题。设计加权最小方差自校正车辆转向控制器,实现对车辆转向横摆稳定性进行实时优化的目标。通过建立加权最小方差控制目标函数,计算出优化横向稳定性所需附加横摆力矩,并实时修正车辆四轮独立驱动转矩,有效提升了四轮独立驱动电动汽车转向工况操纵稳定性。搭建CarSim与Matlab/Simulink联合仿真平台,对所设计自校正四轮转向控制系统进行仿真分析验证。仿真结果表明,该加权最小方差自校正转向控制器能有效提升四轮独立驱动电动汽车的行驶稳定性。 相似文献
10.
四轮独立转向/独立电驱动汽车具有四轮转角、四轮驱动力矩独立可控的优势,易于实现整车集成控制,针对其驱动转向集成控制问题,论文研究了四轮转向与横摆力矩的集成控制方法。采用比例四轮转向控制方法,建立二自由度参考模型,应用最优控制理论设计了四轮转向与横摆力矩集成控制器,通过对后轮附加转角控制和驱动力矩合理分配提高汽车操纵稳定性。应用CarSim与Matlab/Simulink搭建了整车模型、编写了控制程序,选取紧急避障双移线工况进行了仿真试验验证。试验结果表明研究的四轮独立转向/独立电驱动汽车集成控制方法能够保证汽车在紧急转向工况下具有良好的操纵稳定性。 相似文献
11.
针对四轮轮毂电机电动汽车横摆力矩控制,研究了基于变论域模糊控制理论的横摆力矩决策方法和基于规则分配的驱动力分配方法。横摆力矩控制采用分层控制方法,设计了基于变论域模糊控制理论的横摆力矩控制器和驱动力分配器。变论域模糊控制器根据车辆横摆角速度期望值和实际值决策出所需的附加横摆力矩,并通过规则分配方法进行驱动力分配实现。应用Matlab/Simulink与Car Sim联合仿真对控制方法进行了仿真实验验证。结果表明:基于变论域模糊的横摆力矩控制方法相对于无控制能够使轮毂电机电动汽车较好地跟踪期望,有效提高电动汽车行驶稳定性。 相似文献
12.
13.
四轮驱动混合电动车辆稳定性控制逻辑建议采用后马达能量回收制动和一个电液制动器(EHB)。采用一个通常的算法,求得能量回收制动和EHB转矩之间最佳的转矩分布。根据已知输入的所要求的偏转转矩和道路摩擦系数,用该通常算法计算出最佳能量回收制动转矩和最佳的EHB转矩。基于最佳的制动转矩分布,相应驾驶员转向角和车辆速度,用模糊控制算法,车辆稳定控制逻辑建议形成所要求的偏转转矩,去补偿侧滑角和偏转率的误差。对单车道变更机动性用比较固定能量回收制动和最佳能量回收制动,判断车辆稳定性控制逻辑的性能。由仿真结果可以看到,在满足车辆稳定性的情况下,最佳能量回收制动可以比固定的能量回收制动增大能量回收。 相似文献
14.
15.
16.
为提高独立驱动电动汽车在极限工况下的稳定性,提出了基于神经网络PID控制策略的直接横摆力矩决策算法,控制质心侧偏角和横摆角速度并进行转矩分配。基于2自由度车辆模型的线性化特征参数与实际车辆控制目标的偏差,引入动量优化项对神经网络权值进行在线更新,计算出跟踪理想质心侧偏角和横摆角速度所需的直接横摆力矩,通过车辆前后轴动态载荷估计,考虑驱动电机饱和输出力矩和路面限制条件的约束,对各驱动轮进行直接横摆力矩分配。将算法应用于CarSim/Simulink联合仿真模型进行工况仿真实验。结果表明,该方法能够保证车辆在中速情况下于光滑路面紧急转向和紧急移线换道操作稳定性,以及在路面湿滑情况下高速超车快速并线的稳定性。 相似文献
17.