首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Free-standing poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT: PSS)/Bi2Te3 thermoelectric (TE) composite films have been successfully prepared by a simple physical mixing method with different contents of Bi2Te3. x-Ray diffraction (XRD) and scanning electron microscopy were used to analyze the phase composition and microstructure of the composite films. Their TE performance from 100 K to 300 K was systematically investigated. The maximum electrical conductivity of the composite polymer film reached up to 421 S/cm when the film contained 10 wt.% Bi2Te3, corresponding to the highest power factor of 9.9 μW/m/K2, while their Seebeck coefficient fluctuated smoothly in a tiny range (14.2 μV/K to 18.6 μV/K). In addition, a relatively low thermal conductivity of 0.07 ± 0.02 W/m/K has been obtained. The maximum figure of merit of the composite reached up to 0.04 at room temperature, which is a relatively high value in the organic TE field.  相似文献   

2.
Integration of thermoelectric devices within an automotive heat exchanger could enable conversion of lost heat into electrical energy, contributing to improved total output from the engine. For this purpose, synthesis of thick bismuth telluride (Bi2Te3) films is required. Bismuth telluride has been produced by an electrochemical method in nitric acid with a sacrificial bismuth telluride anode as the source of cations. The binary layer grows on the working electrode while the counter-electrode, a Bi2Te3 disk obtained by high frequency melting, is oxidized to BiIII and TeIV. This process leads to auto-regeneration of the solution without modification of its composition. The thickness of films deposited by use of the Bi2Te3 anode was approximately 10 times that without. To demonstrate the utility of a soluble anode in electrochemical deposition, we report characterization of the composition and morphology of the films obtained under different experimental conditions. Perfectly dense and regular Bi2Te3 films (~400 μm) with low internal stress and uniform composition across the cross-section were prepared. Their thermoelectric properties were assessed.  相似文献   

3.
Using shadow masks prepared by standard microfabrication processes, we fabricated in-plane thermoelectric microdevices (4 mm × 4 mm) made of bismuth telluride thin films, and evaluated their performance. We used Bi0.4Te3.0Sb1.6 as the p-type semiconductor and Bi2.0Te2.7Se0.3 as the n-type semiconductor. We deposited p- and n-type thermoelectric thin films on a free-standing thin film of Si3N4 (4 mm × 4 mm × 4 μm) on a Si wafer, and measured the output voltages of the microdevices while heating at the bottom of the Si substrate. The maximum output voltage of the thermoelectric device was 48 mV at 373 K.  相似文献   

4.
We report an enhancement of the thermoelectric figure of merit in polycrystalline In- and Ga-doped Bi0.4Sb1.6Te3 compounds. Via the controlled doping of In or Ga, the lattice thermal conductivity was effectively reduced by strong point-defect phonon scattering while the power factor was not significantly changed due to the similarity of the density of states near the valence-band maximum between undoped and In- or Ga-doped compositions. An enhanced ZT of 1.2 at 320 K was obtained in 0.5 at.% In-doped Bi0.4Sb1.6Te3 compound by these synergetic effects.  相似文献   

5.
In the current study, novel hexagonal rods based on Bi0.4Sb1.6Te3 ingots dispersed with x amount of Se (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) in the form Bi0.4Sb1.6Se3x Te3(1?x) were synthesized via a standard solid-state microwave route. The morphologies of these rods were explored using field-emission scanning electron microscopy (FESEM). The crystal structure of the powders was examined by x-ray diffraction (XRD) analysis, which showed that powders of the 0.0 ≤ x ≤ 0.8 samples could be indexed to the rhombohedral phase, whereas the sample with x = 1.0 had an orthorhombic phase structure. The influence of variations in the Se content on the thermoelectric properties was studied in the temperature range from 300 K to 523 K. Alloying of Se into Bi0.4Sb1.6Te3 effectively caused a decrease in the hole concentration and, thus, a decrease in the electrical conductivity and an increase in the Seebeck coefficient. The maximal power factor measured in the present work was 7.47 mW/mK2 at 373 K for the x = 0.8 sample.  相似文献   

6.
At present, the weak thermoelectric and mechanical performance of zone-melting bismuth telluride alloys cannot support the further improvement of cooling and processing performance of semiconductor refrigeration devices. Here, MnO2 is added into high-strength Bi0.4Sb1.6Te3 prepared by ball milling method to optimize its thermoelectric transport properties. Via in situ reaction, Sb2O3 nano-precipitates are formed in the matrix, which also leads to the surplus of Te element. As results, the donor-like effect is suppressed, thereby increasing carrier concentration and power factor. Besides, volatilization of Te-rich phases during sintering leaves plentiful nanopores, which together with Sb2O3 nano-precipitates significantly decrease the lattice thermal conductivity. Eventually, the maximum ZT reaches 1.43 at 75 °C for the Bi0.4Sb1.6Te3+0.01MnO2 sample. On this basis, a 31-pairs module made of the material and commercial n-type BiTeSe produces large temperature differences (ΔT) of 70.1, 80.8, and 89.4 K at the hot-side temperature (Th) of 300, 325, and 350 K respectively, which are highly competitive. The maximum coefficient of performance of 8.6 and cooling capacity of 7 W are achieved when Th is set as 325 K. This excellent progress will promote the further development of bismuth telluride refrigeration modules.  相似文献   

7.
In this study, we investigated the effect of the structure of microporous p-type (Bi0.4Te3Sb1.6) and n-type (Bi2.0Te2.7Se0.3) BiTe-based thin films on their thermoelectric performance. High-aspect-ratio porous thin films with pore depth greater than 1 μm and pore diameter ranging from 300 nm to 500 nm were prepared by oxygen plasma etching of polyimide (PI) layers capped with a heat-resistant block copolymer, which acted as the template. The cross-plane thermal conductivities of the porous p- and n-type thin films were 0.4 W m?1 K?1 and 0.42 W m?1 K?1, respectively, and the dimensionless figures of merit, ZT, of the p- and n-type BiTe films were estimated as 1.0 and 1.0, respectively, at room temperature. A prototype thermoelectric module consisting of 20 pairs of p- and n-type strips over an area of 3 cm × 5 cm was fabricated on the porous PI substrate. This module produced an output power of 0.1 mW and an output voltage of 0.6 V for a temperature difference of 130°C. The output power of the submicrostructured module was 1.5 times greater than that of a module based on smooth BiTe-based thin films. Thus, the thermoelectric performance of the thin films was improved owing to their submicroscale structure.  相似文献   

8.
The present study focused on synthesis of Bi0.5Sb1.5Te3 thermoelectric powder using an oxide-reduction process. The phase structure and particle size of the synthesized powders were analyzed using x-ray diffractometry and scanning electron microscopy. The synthesized powder was sintered using the spark plasma sintering method. The thermoelectric properties of the sintered body were evaluated by measuring the Seebeck coefficient, electrical resistivity, and thermal conductivity. Bi0.5Sb1.5Te3 powder was synthesized using a combination of mechanical milling, calcination, and reduction processes, using a mixture of Bi2O3, Sb2O3, and TeO2 powders. The sintered body of the oxide-reduction-synthesized Bi0.5Sb1.5Te3 powder showed p-type thermoelectric characteristics. The thermoelectric properties of the sintered bodies depended on the reduction time. After being reduced for 2 h at 663 K, the sintered body of the Bi0.5Sb1.5Te3 powder showed a figure of merit of approximately 1.0 at room temperature.  相似文献   

9.
Bismuth–antimony–telluride based thin film materials were grown by metal organic vapor phase deposition (MOCVD). A planar-type thermoelectric device was fabricated with p-type Bi0.4Sb1.6Te3 and n-type Bi2Te3 thin films. The generator consisted of 20 pairs of p-type and n-type legs. We demonstrated complex structures of different conduction types of thermoelectric elements on the same substrate using two separate deposition runs of p-type and n-type thermoelectric materials. To demonstrate power generation, we heated one side of the sample with a heating block and measured the voltage output. An estimated power of 1.3 μW was obtained for the temperature difference of 45 K. We provide a promising procedure for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials that may have a nanostructure with high thermoelectric properties.  相似文献   

10.
Two kinds of Bi0.4Sb1.6Te3 powder with different particle and grain sizes were fabricated by high-energy ball milling. Powder mixtures with varied weight ratios were consolidated by vacuum hot pressing (HP) to produce nano/ microstructured composites of identical chemical composition. From measurements of the Seebeck coefficient, electrical resistivity, and thermal conductivity of these composites, a figure of merit (ZT) value of up to 1.19 was achieved at 373 K for the sample containing 40% nanograin powder. This ZT value is higher than that of monolithic nanostructured Bi0.4Sb1.6Te3. It is further noted that the ZT value of this sample in the temperature range of 450 K to 575 K is in the range of 0.7 to 1.1. Such ZT characteristics are suitable for power generation applications as no other material with a similar high ZT value in this temperature range has been observed until now. The achieved high ZT value can probably be attributed to the unique nano/microstructure, in which the dispersed nanograin powder increases the number of phonon scattering sites, which in turn results in a decrease of the thermal conductivity while simultaneously increasing the electrical conductivity, owing to the existence of the microsized powder that can provide a fast carrier transportation network. These results indicate that the nano/microstructured Bi0.4Sb1.6Te3 alloy can serve as a high-performance material for application in thermoelectric devices.  相似文献   

11.
Ball milling with subsequent spark plasma sintering (SPS) was used to fabricate bulk nanothermoelectrics based on Bi x Sb2?x Te3. The SPS technique enables reduced size of grains in comparison with the hot-pressing method. The electrical and thermal conductivities, Seebeck coefficient, and thermoelectric figure of merit as functions of temperature and alloy composition were measured for different sintering temperatures. The greatest value of the figure of merit ZT = 1.25 was reached at the temperature of 90°C to 100°C in Bi0.4Sb1.6Te3 for sintering temperature of 450°C to 500°C. The volume and quantitative distributions of size of coherent dispersion areas (CDA) were calculated for different sintering temperatures. The phonon thermal conductivity of nanostructured Bi x Sb2?x Te3 was investigated theoretically taking into account phonon scattering on grain boundaries and nanoprecipitates.  相似文献   

12.
In this work, it is found that unique pillar arrays with nanolayered structure can favorably influence the carrier and phonon transport properties of films. p-(Bi0.5Sb0.5)2Te3 pillar array film with (0 1 5) orientation was successfully achieved by a simple ion-beam-assisted technique at deposition temperature of 400°C, owing to the enhanced mobility of deposited atoms for more sufficient growth along the in-plane direction. The pillar diameter was about 250 nm, and the layered nanostructure was clear, with each layer in the pillar array being <30 nm. The properties of the oriented (Bi0.5Sb0.5)2Te3 pillar array were greatly enhanced in comparison with those of ordinary polycrystalline films synthesized at deposition temperature of 350°C and 250°C. The (Bi0.5Sb0.5)2Te3 pillar array film with (0 1 5) preferred orientation exhibited a thermoelectric dimensionless figure of merit of ZT = 1.25 at room temperature. The unique pillar array with nanolayered structure is the main reason for the observed improvement in the properties of the (Bi0.5Sb0.5)2Te3 film.  相似文献   

13.
Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state‐of‐the‐art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles into the BiSbTe matrix effectively enhances its thermoelectric properties; a high dimensionless figure of merit (ZT) value of up to 1.33 at 373 K is obtained in Bi0.3Sb1.7Te3 incorporated with only 0.4 vol% SiC nanoparticles. SiC nanoinclusions possessing coherent interfaces with the Bi0.3Sb1.7Te3 matrix can increase the Seebeck coefficient while increasing the electrical conductivity, in addition to its effect of reducing lattice thermal conductivity by enhancing phonon scattering. Nano‐SiC dispersion further endows the BiSbTe alloys with better mechanical properties, which are favorable for practical applications and device fabrication.  相似文献   

14.
In this work, we present the optical constants of bismuth telluride (Bi2Te3), and antimony telluride (Sb2Te3) determined using spectroscopic ellipsometry (SE). The spectral range of the optical constants is from 404 nm to 740 nm. Bi2Te3 and Sb2Te3 films with different thicknesses were grown by metalorganic chemical vapor deposition (MOCVD). Multiple sample analysis (MSA) technique was employed in order to eliminate the parameter correlation in the SE data analysis caused by the presence of the overalyer on top of Bi2Te3 and Sb2Te3 films. Optical constants and thicknesses for both Bi2Te3 and Sb2Te3 overlayers were also determined. Independent Bi2Te3 and Sb2Te3 samples were used to check the results obtained. In addition, SE analysis was performed on two Sb2Te3 samples after being etched in diluted NH4OH solution in order to characterize the overlayer and confirm the reliability of the results.  相似文献   

15.
We produced six different composites of p-type bismuth antimony telluride alloys and studied their structure and thermoelectric properties. The components of the composites were obtained in powder form by mechanical alloying. Mixed powders of two different compositions were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as revealed by scanning electron microscopy shows a 50% reduction compared with the conventional (Bi0.2Sb0.8)2Te3. X-ray diffraction (XRD) analysis only shows peak broadening with no clear indication of separate phases, and indicates a systematic decrease of crystallite size in the composite materials. Scattering mechanisms of charge carriers were evaluated by Hall-effect measurements. The thermoelectric properties were investigated via the Harman method from 300 K up to 460 K. The composites show no significant degradation of the power factor and high peak ZT values ranging from 0.86 to 1.04. The thermal conductivity of the composites slightly increases with respect to the conventional alloy. This unexpected behavior can be attributed to two factors: (1) the composites do not yet contain a significant number of grains whose sizes are sufficiently small to increase phonon scattering, and (2) each of the combined components of the composites corresponds to a phase with thermal conductivity higher than the minimum value corresponding to the (Bi0.2Sb0.8)2Te3 alloy.  相似文献   

16.
p-Type antimony telluride (Sb2Te3) thermoelectric thin films were deposited on BK7 glass substrates by ion beam sputter deposition using a fan-shaped binary composite target. The deposition temperature was varied from 100°C to 300°C in increments of 50°C. The influence of the deposition temperature on the microstructure, surface morphology, and thermoelectric properties of the thin films was systematically investigated. x-Ray diffraction results show that various alloy composition phases of the Sb2Te3 materials are grown when the deposition temperature is lower than 200°C. Preferred c-axis orientation of the Sb2Te3 thin film became obvious when the deposition temperature was above 200°C, and thin film with single-phase Sb2Te3 was obtained when the deposition temperature was 250°C. Scanning electron microscopy reveals that the average grain size of the films increases with increasing deposition temperature and that the thin film deposited at 250°C shows rhombohedral shape corresponding to the original Sb2Te3 structure. The room-temperature Seebeck coefficient and electrical conductivity range from 101 μV K?1 to 161 μV K?1 and 0.81 × 103 S cm?1 to 3.91 × 103 S cm?1, respectively, as the deposition temperature is increased from 100°C to 300°C. An optimal power factor of 6.12 × 10?3 W m?1 K?2 is obtained for deposition temperature of 250°C. The thermoelectric properties of Sb2Te3 thin films have been found to be strongly enhanced when prepared using the fan-shaped binary composite target method with an appropriate substrate temperature.  相似文献   

17.
In this work, we present in-situ monitoring of the growth of bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thin films as well as Bi2 Te3-Sb2Te3 superlattice using a spectroscopic ellipsometer (SE). Bi2Te3 and Sb2 Te3 films were grown by metalorganic chemical vapor deposition (MOCVD) at 350 C. A44-wavelength ellipsometer with spectral range from 404 nm to 740 nm was used in this work. The optical constants of Bi2 Te3 and Sb2Te3 at growth temperature were determined by fitting a model to the extracted in-situ SE data of optically thick Bi2 Te3 and Sb2 Te3 films. Compared to the optical constants of Bi2 Te3 and Sb2 Te3 at room temperature, significant temperature dependence was observed. Using their optical constants at growth temperature, the in-situ growth of Bi2 Te3 and Sb2 Te3 thin films were modeled and excellent fit between the experimental data and data generated from the best-fit model was obtained. In-situ growth of different Bi2 Te3-Sb2 Te3 superlattices was also monitored and modeled. The growth of Bi2 Te3 and Sb2 Te3 layers can be seen clearly in in-situ SE data. Modeling of in-situ superlattice growth shows perfect superlattice growth with an abrupt interface between the two constituent films.  相似文献   

18.
The p-type Bi0.4Sb1.6Te3 alloys are prepared using a new method of mechanical alloying followed by microwave-activated hot pressing (MAHP). The effect of sintering temperature on the microstructure and thermoelectric properties of Bi0.4Sb1.6Te3 alloys is investigated. Compared with other sintering techniques, the MAHP process can be used to produce relatively compact bulk materials at lower sintering temperatures owing to its unique sintering mechanism. The grain size of the MAHP specimens increases gradually with the sintering temperature and a partially oriented lamellar structure can be formed in some regions of specimens obtained. The formation of the in situ-generated nano-phase is induced by the arcing effect of the MAHP process, which enhances the phonon scattering effect and decreases the lattice thermal conductivity. A minimum lattice thermal conductivity of 0.41 W/(m·K) and a maximum figure of merit value of 1.04 are obtained at 100°C for the MAHP specimen sintered at 325°C. This technique may also be extended to other functional materials to obtain ultrafine microstructures at low sintering temperatures.  相似文献   

19.
This work focused on the preparation of p-type Bi0.4Sb1.6Te3 bulk materials by combining mechanical alloying (MA) and hot extrusion, with emphasis on grain refinement and preferred grain orientation. Pure Bi, Sb, and Te powders were mechanically alloyed then hot extruded in the temperature range 360–450°C. Bi0.4Sb1.6Te3 bulk materials were successfully prepared by MA and hot extrusion. All the samples had sound appearance, with single phases and high densities. The hot-extruded samples had small grain sizes, and the lower the extrusion temperature, the smaller the grain sizes. The results indicated that the extrudates had preferred orientation. The basal plane was predominantly oriented parallel to the direction of extrusion. Similar Seebeck coefficients were obtained when extrusion temperature was in the range 380–420°C. Electrical resistivity decreased with increasing extrusion temperature. Thermal conductivity was relatively low, even if the extrusion temperature was 450°C. As a result, a ZT value of 1.2 was obtained at room temperature for the sample extruded at 400°C. Therefore, combination of MA and hot extrusion results in significant improvement of both the thermoelectric and mechanical performance of Bi0.4Sb1.6Te3 bulk materials.  相似文献   

20.
We report the thermoelectric properties of organic–inorganic hybrid thin films composed of conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and inorganic gold nanomaterials. Two kinds of material with different shapes, namely rod-shaped gold nanorods (AuNRs) and spherical gold nanoparticles (AuNPs), were used in this study. The PEDOT:PSS/AuNR hybrid films showed an enhancement in electrical conductivity (σ ≈ 2000 S cm?1) and concurrently a decrease in the Seebeck coefficient (S ≈ 12 μV K?1) with increase in the AuNR concentration. This behavior indicates the presence of the hybrid effect of AuNR on the thermoelectric properties. From scanning electron microscopy (SEM) observation of the highly concentrated PEDOT:PSS/AuNR hybrid films, the formation of a percolated structure of AuNRs was confirmed, which probably contributed to the large enhancement in σ. For the highly concentrated PEDOT:PSS/AuNP films, a dense distribution of AuNPs in the film was also observed, but this did not lead to a major change in the σ value, probably due to the less conductive connections between NPs. This suggests that one-dimensional particles with larger aspect ratio (rods and wires) are favorable nanocomponents for development of highly conductive hybrid materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号