首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of the thermal and photodegradation of two commercial polymers, stabilized and unstabilized low-density polyethylene, show the effects of weathering on differential scanning calorimetry (DSC) curves. The shape and the size of the melting peak vary significantly in thermal aging and in accelerated photoirradiation, but no change was observed in natural weathering, implying that the crystallinity remains steady in outdoor exposures. The melting temperatures remain steady for all exposure tests. The fall of mechanical properties and the evolution of chemical structure, followed by IR spectroscopy results, especially near the carbonyl regions, were also observed. The resistance to UV light irradiation as probed by deformation at break was superior in stabilized LDPE compared to unstabilized LDPE. Simple correlations observed between the fall of mechanical properties, the rate of oxidation, and morphology. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
The photo‐oxidation and thermal initiation changes of commercial low density polyethylene (LDPE) films used in greenhouse covering, in the presence or absence of ultraviolet (UV) stabilizer, were monitored by infrared (IR) spectroscopy, by mechanical tests and by applying the grafting of acrylic acid onto the aged films. It was found that the resistance of PE films to UV irradiation and heat initiation as proved by tensile strength and elongation at break % was better for stabilized PE films compared with the unstabilized ones. A simple correlation was not observed between the fall in mechanical properties and the rate of film oxidation. On the other hand, an almost linear relation was obviously noticed between the degree of PE oxidation (C?O) measured by IR spectroscopy and the grafting level. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2365–2371, 2003  相似文献   

3.
Mathematical models are proposed to predict degradation of unstabilized low density polyethylene (LDPE) films and those stabilized with hindered amine light stabilizers (HALS) under both thermo‐oxidation at 90°C and natural weathering conditions. The degradation was measured by change in percent elongation at break (?r) with time. The mathematical approach developed was multiple linear regression analysis (MLRA). The reliability of the selected models was analysed using four statistical criteria, residual variance, coefficient of determination (r2), Student test and Fisher‐Snedecor test. The linear systems that resulted from the MLRA were resolved by the Cholesky method. The results obtained indicated that the polynomial models developed to predict elongation at break were reliable for both unstabilized and HALS‐stabilized samples under thermo‐oxidation at 90°C and natural weathering conditions. This was also confirmed by the comparison of the half‐life time (HLT) values predicted from the models with those observed experimentally. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3284–3292, 2001  相似文献   

4.
The present investigation deals with the thermo‐mechanical recycling of post consumer milk pouches (LDPE‐LLDPE blend) and its use as jute fiber composite materials for engineering applications. The mechanical, thermal, morphological, and dynamic‐mechanical properties of recycled milk pouch‐based jute fiber composites with different fiber contents were evaluated and compared with those of the virgin LDPE‐LLDPE/jute fiber composites. Effect of artificial weathering on mechanical properties of different formulated composites was determined. The recycled polymer‐based jute fiber composites showed inferior mechanical properties as well as poor thermal stability compared to those observed for virgin polymer/jute fiber composites. However, the jute‐composites made with (50:50) recycled milk pouch‐virgin LDPE‐LLDPE blend as polymer matrix indicated significantly superior properties in comparison to the recycled milk pouch/jute composites. Overall mechanical performances of the recycled and virgin polymeric composites were correlated by scanning electron microscopy (SEM). The dynamic mechanical analysis showed that storage modulus values were lower for recycled LDPE‐LLDPE/jute composites compared to virgin LDPE‐LLDPE/jute composites throughout the entire temperature range, but an increase in the storage modulus was observed for recycled‐virgin LDPE‐LLDPE/jute composites. POLYM. COMPOS. 28:78–88, 2007. © 2007 Society of Plastics Engineers  相似文献   

5.
The changes in the carbonyl index, the melt flow rate, the crystalline content and the ultimate tensile properties of metallocene linear low density polyethylene (mLLDPE) films subjected to gamma irradiation from 10 to 800 kGy, were investigated with and without hindered amine stabilizer (HAS). For comparative purposes, unstabilized and HAS stabilized low density polyethylene (LDPE) were also studied. The results indicated that under gamma irradiation, the HAS stabilizer did not have any influence on the oxidative stability of mLLDPE films as compared with unstabilized ones due probably to complexation reactions between the nitroxyl radicals of the stabilizer and the metallocene catalysts leading to inert species. Moreover, higher increases in melt flow index and crystalline content with a fast drop in ultimate tensile properties were observed for higher doses indicating the occurrence of chain scission. It was also found that the metallocene LLDPE structure had no significant effect on the radiation induced oxidative degradation kinetics when compared to LDPE. Whereas, the addition of HAS to LDPE significantly lowered the formation rates of carbonyls and subsequently improved the durability of the material by doubling the half-value-dose.  相似文献   

6.
The effect of electron-beam (EB) irradiation on the mechanical, electrical, and thermal properties of low-density polyethylene (LDPE) was studied The LDPE was irradiated by using 3?MeV EB machine at doses ranging from 25 to 250?kGy in air at room temperature and analyzed for mechanical, thermal, and electrical properties. It was revealed by differential scanning calorimetry analysis that the crystallinity of the EB-radiated LDPE decreased slightly as verified by a marginal reduction in the densities, enthalpy, and melting points. Thermogravimetric analysis test showed that the thermal degradation of LDPE improved by increasing irradiation. The results obtained from both gel content and hot set tests, indicating whether the applicable LDPE has been properly cross-linked or not, showed that under the EB irradiation conditions employed, the cross-linking of the LDPE samples occur mainly in the amorphous region, and the cross-linking density at each irradiation dose depends almost on the amorphous portions of the LDPE. A significant improvement in the tensile strength of the neat LDPE samples was obtained upon EB up to 250?kGy with a concomitant decline in elongation at break. The results on the electrical properties revealed that the surface resistance, volume resistivity, and dielectric strength of the LDPE increase with irradiation dose and reaches a maximum at a 250?kGy irradiation dose. No considerable change of breakdown voltage, dielectric constant, and dielectric loss factor were observed with increasing irradiation dose. The enhancement in the heat deformation, hardness, and thermal aging properties of LDPE upon EB irradiation, suggests that irradiated LDPE is more thermally and mechanically stable than virgin LDPE.  相似文献   

7.
采用二段混炼的方法,制备低密度聚乙烯/苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(LDPE/SEBS)复合材料。探究SEBS的不同含量对LDPE/SEBS力学性能的影响。通过双叔丁基过氧异丙基苯(BIBP)化学交联LDPE/SEBS,制备LDPE/SEBS/BIBP复合材料,探究LDPE/SEBS/BIBP的力学性能、微观形貌、凝胶含量、热学性能和流变性能。结果表明:SEBS用量为50份时,LDPE/SEBS具有较好的力学性能。当BIBP用量为0.9份,LDPE/SEBS/BIBP的力学性能最佳,拉伸强度为26.22 MPa,断裂伸长率为732.23%。随着BIBP用量的增加,LDPE/SEBS/BIBP的界面相容性、凝胶含量和黏度上升,熔融温度、结晶度和损耗模量下降,储能模量曲线的斜率先下降后趋于稳定。  相似文献   

8.
Thermally stable materials can be achieved by crosslinking. This article presents the thermal aging and thermal energy storage properties of ethylene–octene copolymer (EOR) and low‐density polyethylene (LDPE) blends as affected by silane crosslinking. Fourier transform infrared spectroscopy revealed a similar degree of silane grafting among the various blend compositions. However, the highest crosslink content was observed in EOR, whereas the lowest was found for LDPE. From melting temperature and heat of fusion data, a linear relationship between the amount of the crystalline component and the crosslink content was found. The decrease in crystallinity due to crosslinking was very limited, which implied a high thermal energy storage capacity of the silane‐crosslinked products and their good mechanical properties at room temperature. Furthermore, a strong ability to retain the properties after thermal aging indicated good thermal stability of the materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
黎先发  罗学刚 《化工学报》2005,56(12):2429-2433
研究了低密度聚乙烯与马来酸酐的接枝共聚物LDPE-g-MAH对木质素/低密度聚乙烯共混体系热性能、红外光谱分析力学性能、流变行为以及微观形态的影响.DSC-TG综合热分析表明添加增容剂的共混物的熔融温度降低,热稳定性提高;红外光谱分析表明木质素与LDPE-g-MAH之间存在分子间氢键相互作用,流变性能分析表明共混物体系具有可加工性;扫描电子显微镜(SEM)照片显示添加增容剂后分散相尺寸明显减小,分散程度提高;PE-g-MAH有效提高了木质素/聚乙烯吹塑薄膜的力学性能,且当木质素、聚乙烯和LDPE-g-MAH质量比为25/75/10时,力学性能最优.  相似文献   

10.
Effects of silane grafting and water crosslinking reactions on crystallizations, melting behaviors, and dynamic mechanical properties of the LDPE/LLDPE blends are investigated using DSC and DMA. From DSC data, cocrystallization of LDPE and LLDPE does not occur, but cocrosslinking of these two polymers is evidenced at the experimental temperature of 100°C, a temperature lower than melting temperatures of both polymers. The water crosslinking reactions of the LLDPE‐rich blends enable development of a new phase having a melting endotherm in between that of LDPE and LLDPE. From the thermal fractionation data, interaction between LDPE and LLDPE is observed, and compatibilization of the blends can be achieved by the crosslinking reactions. From DMA data, the storage moduli of the blends are not found to be consistent with their degrees of crosslinking. The storage moduli of the blends are not simply determined by the degree of crosslinking but determined by very complicated but unclear factors. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1808–1816, 2001  相似文献   

11.
In this paper, oil fly ash (OFA), a by-product generated by the combustion of oil in power plants, was used as a filler for the preparation of low density polyethylene (LDPE) composite. Four different loadings of filler in the range 1–10%wt were used. Both mechanical and thermal properties were studied using tensile measurements and Differential Scanning Calorimetery. The effect of surface modification of OFA by functionalization with COOH group and the effect of polyethylene-grafted-maleic anhydride as a compatibilizer were also examined. Improvement in Young’s modulus and yield strength of OFA was obtained in the range 1–2% as a result of chemical modification and mainly in the range 5–10%w due to compatiblization. However, a decrease in toughness and elongation at break was also observed. In general, functionalization and compatiblization improved small strain mechanical properties and failed to do the same for large strain properties of composites. No considerable effect for fly ash on melting point, on-set temperature and crystallization peaks was observed. Coupling of functionalization and compatiblization can enhance modulus and tensile strength mechanical properties of composites of LDPE and waste ash.  相似文献   

12.
The UV-degradation of an unstabilized and two HALS stabilized polyethylene (PE) films is described. The degradations are characterized by measuring the oxygen uptake, the formation of CO and CO2, the FT-IR spectra, the mechanical properties, the stabilizer concentration and the oxygen content of the film. The oxygen uptake of the unstabilized PE film led to the expected changes in the IR spectra and embrittlement of the film, while the oxygen uptake by the HALS stabilized films caused only minor changes. The differences between the results for the unstabilized and the HALS stabilized polymers are explained assuming that the initiation of the photodegradation of PE is due to charge transfer complexes.  相似文献   

13.
Rice bran was incorporated into low‐density polyethylene (LDPE) at different concentrations by compounding in a twin‐screw extruder and blown into films of uniform thickness. The rice bran incorporation influenced physical, mechanical, barrier, optical, thermal properties, and biodegradation of LDPE. The mechanical and optical properties decreased as the percentage of rice bran increased. The effect of rice bran on the morphology of LDPE blends was examined using scanning electron microscopy. Oxygen transmission rate and water vapor transmission rate increased with the increased content of rice bran. Addition of rice bran did not alter the melting temperature (Tm) of the blends; however the thermal stability decreased, while glass transition temperature (Tg) increased. Kinetics of thermal degradation was also investigated and the activation energy for thermal degradation indicated that for up to 10% filler addition, the dispersion and interfacial adhesion of rice bran particles in LDPE was good. Aerobic biodegradation tests using municipal sewage sludge and biodegradation studies using specific microorganism (Streptomyces species) revealed that the films are biodegradable. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4514–4522, 2006  相似文献   

14.
In order to study the changes in mechanical and structural properties of low density polyethylene (LDPE) during recycling of PE film wastes from industrial and commercial sources, mixtures of LDPE with 5 percent poly(vinyl chloride) PVC were processed, recycled and heated in air. The effect of added chlorinated high-density polyethylene (CPE), carbon black, antioxidants and heat stabilizers were also investigated. Compounding and recycling were performed in a twin screw extruder equipped with granulating device. Films were blown in an adiabatic vertical extruder. The thermo–oxidative treatments were carried out in a forced-air oven at 107°C. Tensile strength, elongation to break and film impact strength were determined according to ASTM standards. Structural changes were determined by gel chromatography, solution viscometry, melt indexing, differential scanning calorimetry and infrared spectroscopy. Even 5 percent PVC adversely affects the proeessability and mechanical properties of LDPE films. Addition, of the same amount of CPE gives marginal improvements in the mechanical properties, possibly due to a compatibilizing action. PVC and CPE also adversely affect the thermooxidative stability of LDPE. When unstabilized, PVC and CPE evolve large amounts of HCl during processing. Minor degradation of the LDPE also occurs. Stabilization of the LDPE may be achieved by phenolic antioxidants.  相似文献   

15.
The effect of nanofibrillated cellulose (NFC) on the dispersion and stabilization of zinc oxide (ZnO) nanoparticles in waterborne wood coatings was examined. Different coating compositions with and without NFC at varying concentrations of unstabilized, powdery or stabilized ZnO were produced. Properties of free coating films prepared via bar coating and wood specimens coated by brush with the coating compositions were evaluated. This included the effects of NFC and ZnO on the coating appearance, film formation, distribution of ZnO in the coatings, tensile properties and UV absorbing properties of free films and the effects of artificial weathering on the coated wood specimens. We showed that NFC significantly improved the distribution of the unstabilized ZnO in the coatings and prevented sedimentation of ZnO. NFC also improved film formation and inhibited crack formation during curing and weathering for more brittle binder materials. NFC had a pronounced matting effect but did not influence the coating colour. Colour stability of coated wood specimens during weathering was affected by the ZnO content, but needs further improvement. The results show that the biopolymer NFC is suitable to stabilize ZnO in coatings for wood, which could be of interest for other applications, as well.  相似文献   

16.
Structure and mechanical properties were studied for the binary blends of a linear low density polyethylene (LLDPE) (ethylene‐1‐hexene copolymer; density = 900 kg m−3) with narrow short chain branching distribution and a low density polyethylene (LDPE) which is characterized by the long chain branches. It was found by the rheological measurements that the LLDPE and the LDPE are miscible in the molten state. The steady‐state rheological properties of the blends can be predicted using oscillatory shear moduli. Furthermore, the crystallization temperature of LDPE is higher than that of the LLDPE and is found to act as a nucleating agent for the crystallization of the LLDPE. Consequently, the melting temperature, degree of crystallinity, and hardness of the blend increase rapidly with increases in the LDPE content in the blend, even though the amount of the LDPE in the blend is small. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3153–3159, 1999  相似文献   

17.
The thermal and mechanical properties of low‐density polyethylene (LDPE), poly(ε‐caprolactone) (PCL), and their blends were evaluated. Differential scanning calorimetry showed that increasing the PCL content of the blend did not change the LDPE melting temperature, but reduced the crystallinity by up to 16.8%. This behavior was related to interactions between the PCL chains and the crystalline phase of LDPE. Tensile strength and elongation at break values for the blends were lower than those for the pure polymers, which suggested an incompatibility between the polymers. The values for Young's modulus under tensile increased when PCL was added to LDPE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:3909–3914, 2004  相似文献   

18.
Microfibrillar reinforced composites (MFC) comprising an isotropic matrix from a lower melting polymer reinforced by microfibrils of a higher melting polymer were manufactured under industrially relevant conditions and processed via injection molding. Low density polyethylene (LDPE) (matrix) and recycled poly(ethylene terephthalate) (PET) (reinforcing material) from bottles were melt blended (in 30/70 and 50/50 PET/LDPE wt ratio) and extruded, followed by continuous drawing, pelletizing and injection molding of dogbone samples. Samples of each stage of MFC manufacturing and processing were characterized by means of scanning electron microscopy (SEM), wide‐angle X‐ray scattering (WAXS), dynamic mechanical thermal analysis (DMTA), and mechanical testing. SEM and WAXS showed that the extruded blend is isotropic but becomes highly oriented after drawing, being converted into a polymer‐polymer composite upon injection molding at temperatures below the melting temperature of PET. This MFC is characterized by an isotropic LDPE matrix reinforced by randomly distributed PET microfibrils, as concluded from the WAXS patterns and SEM observations. The MFC dogbone samples show impressive mechanical properties—the elastic modulus is about 10 times higher than that of LDPE and about three times higher than reinforced LDPE with glass spheres, approaching the modulus of LDPE reinforced with 30 wt% short‐glass fibers (GF). The tensile strength is at least two times higher than that of LDPE or of reinforced LDPE with glass spheres, approaching that of reinforced LDPE with 30 wt% GF. The impact strength of LDPE increases by 50% after reinforcement with PET. It is concluded that: (i) the MFC approach can be applied in industrially relevant conditions using various blend partners, and (ii) the MFC concept represents an attractive alternative for recycling of PET as well as other polymers.  相似文献   

19.
The effect of electron beam irradiation, EPDM blending, and Azodicarbonamide (ACA) concentration on the foaming properties of LDPE sheet was investigated. The studied properties are foaming degree, cell densities, mechanical properties and thermal decomposition properties. The data showed that the increasing of foaming agent (ACA) concentration reduces the mechanical properties and increases the gel content. Also, electron beam irradiation has a clear effect on increasing the cell density, mechanical properties gel content and thermal properties of irradiated samples when compared with unirradiated samples. EPDM blending with LDPE at a concentration of 20% reduces the doses required to obtain the foaming degree (71.4%) from 50 kGy in LDPE to 5 kGy in LDPE/EPDM (80/20%). This effect may be attributed to enhancement of radiation cross-linking for LDPE by blending with the amorphous polymer (EPDM).  相似文献   

20.
In this study, titania nanotubes(TNTs) were prepared by hydrothermal method with the aim to compare the properties of these one-dimensional tubular nanostructures' reinforced nanocomposites with the carbon and halloysite nanotubes'(CNTs and HNTs, respectively) reinforced nanocomposites. Low density polyethylene(LDPE) was used as the matrix material. The prepared nanocomposites were characterized and compared by means of their morphological, mechanical and thermal properties. SEM results showed enhanced interfacial interaction and better dispersion of TNTs and HNTs into LDPE with the incorporation of a MAPE compatibilizer,however, these interactions seem to be absent between CNTs and LDPE, and the CNTs remained agglomerated.Contact angle measurements revealed that CNT filled nanocomposites are more hydrophilic than HNT composites, and less than TNT composites. CNTs provided better tensile strength and Young's modulus than HNT and TNT nanocomposites, a 42% increase in tensile strength and Young's modulus is achieved compared to LDPE.Tear strength improvement was noticed in the TNT composites with a value of 35.4 N·mm~(-1), compared to CNT composites with a value of 25.5 N·mm~(-1)·s~(-1). All the prepared nanocomposites are more thermally stable than neat LDPE and the best improvement in thermal stability was observed for CNT reinforced nanocomposites.CNTs depicted the best improvement in tensile and thermal properties and the MAPE compatibilizer effectiveness regarding morphological. mechanical and thermal properties was only observed for TNT and HNT systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号