首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a Galerkin least-squares (GLS) finite element method, in which residuals in least-squares form are added to the standard Galerkin variational equation, is developed to solve the Helmholtz equation in two dimensions. An important feature of GLS methods is the introduction of a local mesh parameter that may be designed to provide accurate solutions with relatively coarse meshes. Previous work has accomplished this for the one-dimensional Helmholtz equation using dispersion analysis. In this paper, the selection of the GLS mesh parameter for two dimensions is considered, and leads to elements that exhibit improved phase accuracy. For any given direction of wave propagation, an optimal GLS mesh parameter is determined using two-dimensional Fourier analysis. In general problems, the direction of wave propagation will not be known a priori. In this case, an optimal GLS parameter is found which reduces phase error for all possible wave vector orientations over elements. The optimal GLS parameters are derived for both consistent and lumped mass approximations. Several numerical examples are given and the results compared with those obtained from the Galerkin method. The extension of GLS to higher-order quadratic interpolations is also presented.  相似文献   

2.
A new algorithm to generate three‐dimensional (3D) mesh for thin‐walled structures is proposed. In the proposed algorithm, the mesh generation procedure is divided into two distinct phases. In the first phase, a surface mesh generator is employed to generate a surface mesh for the mid‐surface of the thin‐walled structure. The surface mesh generator used will control the element size properties of the final mesh along the surface direction. In the second phase, specially designed algorithms are used to convert the surface mesh to a 3D solid mesh by extrusion in the surface normal direction of the surface. The extrusion procedure will control the refinement levels of the final mesh along the surface normal direction. If the input surface mesh is a pure quadrilateral mesh and refinement level in the surface normal direction is uniform along the whole surface, all hex‐meshes will be produced. Otherwise, the final 3D meshes generated will eventually consist of four types of solid elements, namely, tetrahedron, prism, pyramid and hexahedron. The presented algorithm is highly flexible in the sense that, in the first phase, any existing surface mesh generator can be employed while in the second phase, the extrusion procedure can accept either a triangular or a quadrilateral or even a mixed mesh as input and there is virtually no constraint on the grading of the input mesh. In addition, the extrusion procedure development is able to handle structural joints formed by the intersections of different surfaces. Numerical experiments indicate that the present algorithm is applicable to most practical situations and well‐shaped elements are generated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
A parallel multigrid (MG) method is developed to reduce the large computational costs involved by the finite element simulation of highly viscous fluid flows, especially those resulting from metal forming applications, which are characterized by using a mixed velocity/pressure implicit formulation, unstructured meshes of tetrahedra, and frequent remeshings. The developed MG method follows a hybrid approach where the different levels of nonnested meshes are geometrically constructed by mesh coarsening, while the linear systems of the intermediate levels result from the Galerkin algebraic approach. A linear O(N) convergence rate is expected (with N being the number of unknowns), while keeping software parallel efficiency. These objectives lead to selecting unusual MG smoothers (iterative solvers) for the upper grid levels and to developing parallel mesh coarsening algorithms along with parallel transfer operators between the different levels of partitioned meshes. Within the utilized PETSc library, the developed MG method is employed as a preconditioner for the usual conjugate residual algorithm because of the symmetric undefinite matrix of the system to solve. It shows a convergence rate close to optimal, an excellent parallel efficiency, and the ability to handle the complex forming problems encountered in 3‐dimensional hot forging, which involve large material deformations and frequent remeshings.  相似文献   

4.
In computational solid mechanics, the ALE formalism can be very useful to reduce the size of finite element models of continuous forming operations such as roll forming. The mesh of these ALE models is said to be quasi‐Eulerian because the nodes remain almost fixed—or almost Eulerian—in the main process direction, although they are required to move in the orthogonal plane in order to follow the lateral displacements of the solid. This paper extensively presents a complete node relocation procedure dedicated to such ALE models. The discussion focusses on quadrangular and hexahedral meshes with local refinements. The main concern of this work is the preservation of the geometrical features and the shape of the free boundaries of the mesh. With this aim in view, each type of nodes (corner, edge, surface and volume) is treated sequentially with dedicated algorithms. A special care is given to highly curved 3D surfaces for which a CPU‐efficient smoothing technique is proposed. This new method relies on a spline surface reconstruction, on a very fast weighted Laplacian smoother with original weights and on a robust reprojection algorithm. The overall consistency of this mesh management procedure is finally demonstrated in two numerical applications. The first one is a 2D ALE simulation of a drawbead, which provides similar results to an equivalent Lagrangian model yet is much faster. The second application is a 3D industrial ALE model of a 16‐stand roll forming line. In this case, all attempts to perform the same simulation by using the Lagrangian formalism have been unsuccessful. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A key issue in the boundary element method (BEM) is the solution of the associated system of algebraic equations whose matrices are dense, nonsymmetric and sometimes ill conditioned. For large scale tridimensional problems, direct methods like Gauss elimination become too expensive and iterative methods may be preferable. This paper presents a comparison of the performances of some iterative techniques based on conjugate gradient solvers as conjugate gradient squared (CGS) and bi-conjugate gradient (Bi-CG) that seem to have the potential to be efficient and competitive for BEM algebraic systems of equations, specially when used with an appropriate preconditioner. A comparison with the direct application of the conjugate gradient method to the normalized systems of equations (CGNE and CGNR) is also presented.  相似文献   

6.
In this paper, several boundary element regularization methods, such as iterative, conjugate gradient, Tikhonov regularization and singular value decomposition methods, for solving the Cauchy problem associated to the Helmholtz equation are developed and compared. Regularizing stopping criteria are developed and the convergence, as well as the stability, of the numerical methods proposed are analysed. The Cauchy problem for the Helmholtz equation can be regularized by various methods, such as the general regularization methods presented in this paper, but more accurate results are obtained by classical methods, such as the singular value decomposition and the Tikhonov regularization methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
We present a black‐box two‐level solver for indefinite algebraic linear system of equations arising from the finite element discretization. Numerical experiments show the applicability of the method to 3D Helmholtz equations and shear banding problems with strain softening. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper we compare direct and preconditioned iterative methods for the solution of nonsymmetric, sparse systems of linear algebraic equations. These problems occur in finite difference and finite element simulations of semiconductor devices, and fluid flow problems. We consider five iterative methods that appear to be the most promising for this class of problems: the biconjugate gradient method, the conjugate gradient squared method, the generalized minimal residual method, the generalized conjugate residual method and the method of orthogonal minimization. Each of these methods was tested using similar preconditioning (incomplete LU factorization) on a set of large, sparse matrices arising from finite element simulation of semiconductor devices. Results are shown where we compare the computation time and memory requirements for each of these methods against one another, as well as against a direct method that uses LU factorization to solve these problems. The results of our numerical experiments show that preconditioned iterative methods are a practical alternative to direct methods in the solution of large, sparse systems of equations, and can offer significant savings in storage and CPU time.  相似文献   

9.
The inverse boundary optimization problem, governed by the Helmholtz equation, is analyzed by the Trefftz method (TM) and the exponentially convergent scalar homotopy algorithm (ECSHA). In the inverse boundary optimization problem, the position for part of boundary with given boundary condition is unknown, and the position for the rest of boundary with additionally specified boundary conditions is given. Therefore, it is very difficult to handle the boundary optimization problem by any numerical scheme. In order to stably solve the boundary optimization problem, the TM, one kind of boundary-type meshless methods, is adopted in this study, since it can avoid the generation of mesh grid and numerical integration. In the boundary optimization problem governed by the Helmholtz equation, the numerical solution of TM is expressed as linear combination of the T-complete functions. When this problem is considered by TM, a system of nonlinear algebraic equations will be formed and solved by ECSHA which will converge exponentially. The evolutionary process of ECSHA can acquire the unknown coefficients in TM and the spatial position of the unknown boundary simultaneously. Some numerical examples will be provided to demonstrate the ability and accuracy of the proposed scheme. Besides, the stability of the proposed meshless method will be validated by adding some noise into the boundary conditions.  相似文献   

10.
The dispersion properties of finite element models for aeroacoustic propagation based on the convected scalar Helmholtz equation and on the Galbrun equation are examined. The current study focusses on the effect of the mean flow on the dispersion and amplitude errors present in the discrete numerical solutions. A general two‐dimensional dispersion analysis is presented for the discrete problem on a regular unbounded mesh, and results are presented for the particular case of one‐dimensional acoustic propagation in which the wave direction is aligned with the mean flow. The magnitude and sign of the mean flow is shown to have a significant effect on the accuracy of the numerical schemes. Quadratic Helmholtz elements in particular are shown to be much less effective for downstream—as opposed to upstream—propagation, even when the effect of wave shortening or elongation due to the mean flow is taken into account. These trends are also observed in solutions obtained for simple test problems on finite meshes. A similar analysis of two‐dimensional propagation is presented in an accompanying article. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
A verification methodology for adaptive processes is devised. The mathematical claims made during the process are identified and measures are presented in order to verify that the mathematical equations are solved correctly. The analysis is based on a formal definition of the optimality of the adaptive process in the case of the control of the L‐norm of the interpolation error. The process requires a reconstruction that is verified using a proper norm. The process also depends on mesh adaptation toolkits in order to generate adapted meshes. In this case, the non‐conformity measure is used to evaluate how well the adapted meshes conform to the size specification map at each iteration. Finally, the adaptive process should converge toward an optimal mesh. The optimality of the mesh is measured using the standard deviation of the element‐wise value of the L‐norm of the interpolation error. The results compare the optimality of an anisotropic process to an isotropic process and to uniform refinement on highly anisotropic 2D and 3D test cases. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
When applying numerical methods for the computation of stationary waves from the Helmholtz equation, one obtains ‘numerical waves’ that are dispersive also in non-dispersive media. The numerical wave displays a phase velocity that depends on the parameter k of the Helmholtz equation. In dispersion analysis, the phase difference between the exact and the numerical solutions is investigated. In this paper, the authors' recent result on the phase difference for one-dimensional problems is numerically evaluated and discussed in the context of other work directed to this topic. It is then shown that previous error estimates in H1-norm are of nondispersive character but hold for medium or high wavenumber on extremely refined mesh only. On the other hand, recently proven error estimates for constant resolution contain a pollution term. With certain assumptions on the exact solution, this term is of the order of the phase difference. Thus a link is established between the results of dispersion analysis and the results of numerical analysis. Throughout the paper, the presentation and discussion of theoretical results is accompanied by numerical evaluation of several model problems. Special attention is given to the performance of the Galerkin method with a higher order of polynomial approximation p(h-p-version).  相似文献   

13.
For high wave numbers, the Helmholtz equation suffers the so‐called ‘pollution effect’. This effect is directly related to the dispersion. A method to measure the dispersion on any numerical method related to the classical Galerkin FEM is presented. This method does not require to compute the numerical solution of the problem and is extremely fast. Numerical results on the classical Galerkin FEM (p‐method) is compared to modified methods presented in the literature. A study of the influence of the topology triangles is also carried out. The efficiency of the different methods is compared. The numerical results in two of the mesh and for square elements show that the high order elements control the dispersion well. The most effective modified method is the QSFEM [1,2] but it is also very complicated in the general setting. The residual‐free bubble [3,4] is effective in one dimension but not in higher dimensions. The least‐square method [1,5] approach lowers the dispersion but relatively little. The results for triangular meshes show that the best topology is the ‘criss‐cross’ pattern. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Conference diary     
We present a method that has been developed for the construction of grids suitable for a large class of Computational Fluid Dynamics (CFD) solvers. Three independent steps are considered: a multidomain generation, an optimization and an adaptation. The first step handles the complexity of the three-dimensional domain to be meshed and is able to perform an algebraic construction of the grid points within a multidomain topology; any decomposition can be considered and analysed by the algorithm. The second step is able to optimize a mesh with respect to a quality measure defined in terms of cell deformation; a conjugate gradient algorithm drives the nodes up to an equilibrium position that realizes the minimum of a mesh energy quantity. The final step handles the physics of the problem and moves the nodes in order to refine the mesh where anything of interest takes place, while preserving its good metric quality. The three steps have been implemented independently and successfully, as shown by the examples presented.  相似文献   

15.
A solution strategy is proposed and implemented for taking advantage of the hierarchical structure of linear equation sets arising from the p-type finite element method using a hierarchical basis function set. The algorithm dynamically branches to either direct or iterative solution methods. In. the iterative solution branch, the substructure of the finite element equation set is used to generate a lower order preconditioner for a preconditioned conjugate gradient (PCG) method. The convergence rate of the PCG algorithm is monitored to improve the heuristics used in the choice of the preconditioner. The robustness and efficiency of the method are demonstrated on a variety of three dimensional examples utilizing both hexahedral and tetrahedral mesh discretizations. This strategy has been implemented in a p-version finite element code which has been used in an industrial environment for over two years to solve mechanical design problems.  相似文献   

16.
This paper presents a tetrahedral mesh generation method for numerically solving partial differential equations using finite element or finite volume methods in three‐dimensional space. The main issues are the mesh quality and mesh size, which directly affect the accuracy of the numerical solution and the computational cost. Two basic problems need to be resolved, namely boundary conformity and field points distribution. The proposed method utilizes a special three‐dimensional triangulation, so‐called constrained Delaunay tetrahedralization to conform the domain boundary and create field points simultaneously. Good quality tetrahedra and graded mesh size can be theoretically guaranteed for a large class of mesh domains. In addition, an isotropic size field associated with the numerical solution can be supplied; the field points will then be distributed according to it. Good mesh size conformity can be achieved for smooth sizing informations. The proposed method has been implemented. Various examples are provided to illustrate its theoretical aspects as well as practical performance. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
In this work, we use Nitsche's formulation to weakly enforce kinematic constraints at an embedded interface in Helmholtz problems. Allowing embedded interfaces in a mesh provides significant ease for discretization, especially when material interfaces have complex geometries. We provide analytical results that establish the well‐posedness of Helmholtz variational problems and convergence of the corresponding finite element discretizations when Nitsche's method is used to enforce kinematic constraints. As in the analysis of conventional Helmholtz problems, we show that the inf‐sup constant remains positive provided that the Nitsche's stabilization parameter is judiciously chosen. We then apply our formulation to several 2D plane‐wave examples that confirm our analytical findings. Doing so, we demonstrate the asymptotic convergence of the proposed method and show that numerical results are in accordance with the theoretical analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
For isoparametric element meshes, the control-volume finite-element method for resin transfer molding (RTM) mold filling generates an asymmetric matrix, and the performance of the pre-conditioner conjugate gradient (PCG) solver decreases by almost one order of magnitude, even for meshes with very few trivial asymmetric data points. In this paper, the asymmetric parts of the linear equations were transferred to the right-hand sides, and then the linear equations were transformed into an equivalent set of symmetric equations. The right-hand sides of the system of equations were updated only when the set of filled nodes changed. The time steps were controlled by the rule of “one time step, one element-size distance.” Based on the PCG solver and the time-step strategy, the computational complexity of the implicit control-volume method was analyzed and presented. Both analytical and case studies showed that the computational complexity of the PCG solver was of order N squared (where N is the number of nodes) for both 2.5D and 3D meshes. The proposed approach was very suitable for a 3D mesh and had the capability of simulating a mesh with 50,000 nodes in under one hour using a 2.0 GHz CPU, 512M RAM computer.  相似文献   

19.
In this paper, we examine the performance of high‐order finite element methods (FEM) for aeroacoustic propagation, based on the convected Helmholtz equation. A methodology is presented to measure the dispersion and amplitude errors of the p‐FEM, including non‐interpolating shape functions, such as ‘bubble’ shape functions. A series of simple test cases are also presented to support the results of the dispersion analysis. The main conclusion is that the properties of p‐FEM that make its strength for standard acoustics (e.g., exponential p‐convergence, low dispersion error) remain present for flow acoustics as well. However, the flow has a noticeable effect on the accuracy of the numerical solution, even when the change in wavelength due to the mean flow is accounted for, and an approximation of the dispersion error is proposed to describe the influence of the mean flow. Also discussed is the so‐called aliasing effect, which can reduce the accuracy of the solution in the case of downstream propagation. This can be avoided by an appropriate choice of mesh resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
An iterative procedure, namely the minimal error method, for solving stably the Cauchy problem associated with Helmholtz-type equations is introduced and investigated in this paper. This method is compared with another two iterative algorithms previously proposed by Marin et al. (Comput Mech 31:367–377, 2003; Eng Anal Bound Elem 28:1025–1034, 2004), i.e. the conjugate gradient and Landweber–Fridman methods, respectively. The inverse problem analysed in this study is regularized by providing an efficient stopping criterion that ceases the iterative process in order to retrieve stable numerical solutions. The numerical implementation of the aforementioned iterative algorithms is realized by employing the boundary element method for both two-dimensional Helmholtz and modified Helmholtz equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号