首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amidoximated chitosan‐g‐poly(acrylonitrile) (PAN) copolymer was prepared by a reaction between hydroxylamine and cyano group in chitosan‐g‐PAN copolymer prepared by grafting PAN onto crosslinked chitosan with epychlorohydrine. The adsorption and desorption capacities for heavy metal ions were measured under various conditions. The adsorption capacity of amidoximated chitosan‐g‐PAN copolymer increased with increasing pH values, and was increased for Cu2+ and Pb2+ but a little decreased for Zn2+ and Cd2+ with increasing PAN grafting percentage in amidoximated chitosan‐g‐PAN copolymer. In addition, desorption capacity for all metal ions was increased with increasing pH values in contrast to the adsorption results. Stability constants of amidoximated chitosan‐g‐PAN copolymer were higher for Cu2+ and Pb2+ but lower for Zn2+ and Cd2+ than those of crosslinked chitosan. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 469–476, 1999  相似文献   

2.
In this investigation, the electroless copper method with various cupric sulfate concentrations (0.24, 0.36, 0.48, 0.60M) without sensitizing and activating is used to deposit electroless copper compounds (CuS) on the swelling pretreatment polyacrylonitrile(SPAN) surface for electromagnetic interference (EMI) shielding materials. The acetic acid can swell polyacrylonitrile (PAN) effectively which donot destroy the hexagonal structure of polyacrylonitrile, only looses the molecule chain of polyacrylonitrile then the hexagonal CuS crystal deposits on the SPAN easily, and increases the EMI shielding effectiveness (SE) of CuS‐SPAN composites. However, the nearly amorphous of CuS deposits on the surface of without swelling pretreatment PAN(CuS‐PAN). The EMI SE of CuS‐SPAN composites are better than those of CuS‐PAN, 10–15 dB larger from CuS‐PAN. In the study, the best EMI SE of CuS‐SPAN and CuS‐PAN composites are about 30–35 dB and 18–20 dB respectively, as the cupric ion concentration is 0.48M. From the high resolution transmission electron micrographs(HR‐TEM) analysis, there are two structures, face‐centered cubic(FCC) Cu2‐xS crystal in the inner layer of CuS‐SPAN composite and hexagonal CuS crystal on the outer layer of CuS‐SPAN composite, in the SPAN as the cupric ion concentration is 0.48M. The particle size distribution of Cu2‐xS in the inner layer of CuS‐SPAN is from 6 to 30 nm. However, the major particle size distribution of Cu2‐xS in the inner layer of CuS‐SPAN is from 15 to 20 nm. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
In this work, the electroless copper method with different reductant compositions (NaHSO3/Na2 S2O3·5H2O and Na2S2O3·5H2O) without sensitizing and activating, was used to deposit copper‐sulfide deposition on the polyacrylonitrile (PAN) surface for electromagnetic interference (EMI) shielding materials. The weak reductant, NaHSO3, in the electroless copper method was used to control the phase of copper‐sulfide deposition. The Cux(x=1–1.8)S was deposited on the PAN (CuxS‐PAN) by reductant composition (NaHSO3/Na2S2O3·5H2O) and the Cux(x=1–1.8)S deposition of CuxS‐PAN possesses three kinds of copper‐sulfide phases (CuS, Cu1.75S and Cu1.8S). However, the electroless copper with reductant was only Na2S2O3·5H2O (without weak reductant, NaHSO3), the hexagonal CuS deposition was plated on the PAN (CuS‐PAN) and increased the EMI shielding effectiveness of CuS‐PAN composites about 10–15 dB. In this study, the best EMI SE of CuS‐PAN and CuxS‐PAN composites were about 27–30 dB and 15–17 dB respectively, as the cupric ion concentration was 0.24 M. The volume resistivity of CuS‐PAN composite was about 1000 times lower than that of CuxS‐PAN composite and lowest volume resistivity of CuS‐PAN composites was 0.012 Ω cm, as the cupric ion concentration was 0.24 M. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
In this work, gallium doped copper sulfide (Ga-doped CuS) nanocrystals were prepared using a solvothermal method. The effects of Ga doping on the crystal structures, chemical composition, morphology, optical properties and thermal performance of copper sulfide (CuS) were investigated. The Ga-doped CuS nanocrystals had a hexagonal structure comparable to that of pure CuS. The Cu+/Cu2+ ratio first decreased and then increased with increasing Ga3+ doping. Both CuS and Ga-doped CuS exhibited nanoplate and nanorod morphologies. The visible transmittance of the Ga-doped CuS films was in the range of 61–77.1%. Importantly, the near-infrared (NIR) shielding performance of the films can be tuned by adjusting the concentration of the Ga dopant. The NIR shielding value of the optimal Ga-doped CuS film was 72.4%, which was approximately 1.5 times as high as that of the pure CuS film. This can be ascribed to the enhanced plasmonic NIR absorption that resulted from an increase in the hole concentration after doping with Ga3+ ions. In the thermal performance test, the Ga-doped CuS film lowered the interior temperature of the heat box by 9.1 °C. Therefore, the integration of good visible transmittance and high NIR shielding performance make the Ga-doped CuS nanocrystals a promising candidate for energy-efficient window coatings.  相似文献   

5.
CdS thin films of about 1 m thickness were deposited from an aqueous solution containing Cd2+, Na2S2O3 and gelatin as the protective colloid to stabilize the size of colloidal sulfur at from 30 to 40 nm and keep the concentration to an appropriate value during electrolysis. The effects of concentrations of Cd2+ and S2O3 2– ions and the deposition potential on the composition of CdS films were studied. The reaction mechanism of CdS film formation on the electrode is discussed. CdS film, whose composition is uniform across the film and which does not contain excess metallic cadmium, can be deposited from a solution containing 0.50 to 2.00 mM Cd(NO3)2, 1.00 to 5.00 mM Na2S2O3 and 1.0 × 10–7 to 1.0 × 10–3 wt % gelatin.  相似文献   

6.
The growth of anodic CdS films on polycrystalline Cd takes place in two stages. Initially a barrier film grows to a thickness of about 5nm by high-field ion migration. This film contains as many as 1025 donors in m?3. When an electrode potential exceeds a critical value, the second stage of film growth begins, and a porous or polycrystalline. CdS layer forms over the original barrier layer. This type of film can thicken to 500 nm or more by a diffusion-controlled process. The kinetics and mechanism of both kinds of film growth are discussed.  相似文献   

7.
Particulate and fibrous adsorbents with enriched amidoxime groups were synthesized by using a novel monomer N,N′‐dipropionitrile acrylamide. The adsorption properties of amidoximated poly(N,N′‐dipropionitrile acrylamide) [poly(DPAAm)] particles and a nonwoven fabric grafted with the same for UO22+, Pb2+, Cu2+, and Co2+ at high concentrations were investigated by batch process. Metal ion adsorption studies were conducted from metal ion solutions with different initial concentrations (100–1500 ppm). It was shown that particulated amidoximated poly(DPAAm) has higher adsorption capacity than amidoximated nonwoven fabrics for all metal ions, especially for uranyl ions. The results of the adsorption studies showed that the interaction between UO22+ and amidoximated groups agree with the Langmuir‐type isotherm. From the Langmuir equation, the adsorption capacities were found as 400 mg UO22+/g dry amidoximated poly(DPAAm) and 250 mg UO22+/g dry amidoximated graft polymer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1705–1710, 2004  相似文献   

8.
A. Jana 《Electrochimica acta》2010,55(22):6553-6410
In the present investigation thin semiconductor films of CdS, Bi2S3 and their intermixed composite films have been electro-synthesized onto conducting glass substrate from nonaqueous bath containing various levels of the precursor salts of Cd2+ and Bi3+. Spectrophotometric measurements determine the band gap energies of the composite films at ∼2.53 eV and ∼1.37 eV corresponding to the binary systems CdS and Bi2S3, respectively. The film matrices exhibit a unique structure of cross-linked nanoporous Bi2S3 mesh containing spherical shaped CdS crystals distributed uniformly on the top of the surface as detected from the morphological studies through scanning electron microscopy and transmission electron microscopy. X-ray diffraction studies show crystalline structure of the films of which the chemical compositions were determined through energy dispersive analysis of X-ray. The film matrices enriched with Cd exhibit high dielectric property as obtained from the capacitance measurement and substantial thermal stability derived from thermogravimetry and differential thermal analysis. These films are found to be highly fluorescent in nature when subjected to spectrofluorimetric analysis. The Raman spectral data exhibit characteristic peaks that are associated with Cd-S and Bi-S bonds as well as the defects created by metal oxides. The spectrum also demonstrates that the changes in the relative position of the overtone bands are associated with compositional variation of the film surface. The study of electrochemical polarization of different films, derives the inherent stability of the matrices towards dissolution. This was followed by anodic stripping voltammetry to estimate the dissolved cations during polarization. Photoelectrochemical measurements demonstrate n-type semiconductivity of the films with high order of donor density and reasonable photoactivity under illuminated condition. It may be summarized that the blended intermix of CdS-Bi2S3 film acquires tailor made properties desirable for photoelectrochemical application and displays solar conversion efficiency of the order of ∼1%.  相似文献   

9.
The structure of polyacrylonitrile–polypyrrole composite film, prepared using pyrrole in vapor and FeCl3 as catalyst, was investigated using IR spectroscopy, DTA/TGA, and resistivity measurements. The films showed improved thermal stability and electrical conduction. The strength of the composite film decreased as compared to pure PAN and the growth structures of polypyrrole could be seen.  相似文献   

10.
Electrically conducting composite films of polyaniline:polyacyrlonitrile (PANI:PAN) prepared with varying composition ratios of aniline mixed with a fixed amount PAN. The films of optimum thicknesses (0.10 mm) were obtained using an electrically operated automatic pressure machine. The films polymerized by oxidative polymerization using 0.1M potassium persulphate (K2S2O8), undoped in 1M aqueous ammonia (NH4OH) and doped in 1M hydrochloric acid (HCl). The conductivity of composite films was studied by keeping it in 1M HCl for different time period using 4-in-line probe DC electrical conductivity measuring instrument and the temperature dependence of DC electrical conductivity was studied using isothermal technique. The PANI:PAN composite film is used as a working electrode in an electrochemical cell. Chemically doped composite film is used as cathode (working electrode), aluminum metal foil as anode (counter electrode) and platinum foil as reference electrode. The electrolyte is of 0.05M aluminum chloride (AlCl3) in dimethyl sulfoxide (DMSO). The voltage of the working electrode is stabilized with respect to the reference electrode and current applied between the working and counter electrode through a 9-V battery. The change in voltage versus time is plotted as the discharge curve and reversing the cell processes results in the doping of the composite films. The diffusion coefficient of the dopant ion (Cl) present in the fully doped films were estimated by the galvanostatic pulse technique and found to bedifferent in different samples in the range of 10−16 to 10−12 cm2 s−1. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Nanocomposite films of CdS:Cu nanoparticles with chitosan and sodium alginate were prepared using spin‐coating method, and characterized by X‐ray diffraction, transmission electron microscopy, atomic force microscopy (AFM), ultraviolet–visible (UV–vis), and photoluminescent spectrum. The CdS:Cu nanoparticles have a cubic structure with an average crystal size of ∼2 nm, which show blue shift in UV–vis absorption spectra compared to bulk CdS. Furthermore, the CdS:Cu nanoparticles are formed steadily with increasing number of composite layers and homogeneously distributed between the chitosan and alginate layer. AFM measurement shows that the average height of a mono‐layered composite film is 25 nm. Emissions ascribed to the electron–hole recombination of CdS and the t2‐like energy level of Cu was observed for the multi‐layered composite films. POLYM. COMPOS., 35:477–481, 2014. © 2013 Society of Plastics Engineers  相似文献   

12.
《Ceramics International》2016,42(6):6682-6691
Cadmium sulfide (CdS) thin film consisting of nanowires over a flat CdS thin film were synthesized by depositing cadmium hydroxide [Cd(OH)2] nanowires (NW) bundles, followed by conversion to sulfide phase by using ion exchange route at room temperature (300 K) based on negative free energy of formation. The influence of post annealing treatment on as-deposited CdS NW films has been studied in the temperature range 423–523 K through the observation of nanowires alignments. The annealing effect on the intrinsic properties have been studied in relation with the crystallites sizes, micro strain, dislocation density and optical band gap of the deposited films. Furthermore, the behavior of inter- and intramolecular hydroxide ion (OH) has been investigated from FTIR analysis. Additionally, the effects of post annealing on photovoltaic device performance has been scrutinized and the obtained results were correlated with structural and optical properties.  相似文献   

13.
Electrically conducting polyacrylonitrile (PAN)/polypyrrole (PPy) composite films were prepared by electrochemical polymerization of pyrrole in an insulating PAN matrix under various polymerization conditions and their electrical properties were studied. The conductivities of PAN/PPy composite films peeled off from the platinum electrode he lie in the range of 10?2–10?3 s/cm, depending on the preparation conditions: The conductivity increased with the concentrations of the electrolyte and the monomer, but it decreased with the polymerization temperature of pyrrole and the applied potential.  相似文献   

14.
Konjac glucomannan(KGM)/poly(vinyl alcohol)(PVA)/Na+ modified rectorite (Na+REC) nanocomposite films were obtained by using a casting/solvent evaporation method. The structures and microstructures of KGM/PVA/Na+REC composite films were analyzed by FTIR, XRD, SEM and TEM. A wide variety of material characteristics for the KGM/PVA/Na+REC composite films were investigated, including the mechanical property, optical transmittance and thermal stability. The results revealed that by adding PVA more well-intercalative/exfoliated structure of composite film was obtained. As a result, the KGM/PVA/Na+REC composite film at low Na+REC and PVA content exhibited an improvement in mechanical properties and thermal stability due to a reinforcement effect. In vitro drug-controlled release studies showed a slower and more continuous release for KGM/PVA/Na+REC composite film in comparison with KGM/Na+REC composite film.  相似文献   

15.
The prime goal of this work is to synthesize free‐standing polyvinyl alcohol (PVA) films doped with Ag2S, CuS, Ag2S/CuS alloy, and Ag2S/CuS nanocomposites through the sol–gel route. The dependence of Ag2S content in the PVA nanocomposite films on both the real and imaginary parts of the complex permittivity and loss tangent values was examined. An enhanced dielectric constant was achieved with minimum dielectric loss due to the insulating silica layer. By changing the Ag2S content in Ag2S/CuS PVA films, the AC conductivity is improved with pure Ag2S nanoparticles exhibiting highest values of the order of 10?6?10?9 S/cm. The Cole–Cole parameters were calculated and the semicircles observed in the plots indicate a single relaxation process. The results suggest that these composite films are potential materials for embedded capacitor applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43568.  相似文献   

16.
In this work, Li+ ion conducting polymer composite electrolyte films (PECs) were prepared based on poly (vinyl alcohol) (PVA), lithium hexafluoro arsenate (LiAsF6), and ceramic filler TiO2 using solution cast technique. The XRD and FTIR spectra were used to determine the complexation of the PVA polymer with LiAsF6 salt. The ionic conductivities of the (PVA + LiAsF6) and (PVA + LiAsF6 + TiO2) films have been determined by the A.C. impedance measurements in the temperature range 320–440 K. The maximum conductivity was found to be 5.10 × 10?4 S cm?1 for PVA:LiAsF6 (75:25) + 5 wt% TiO2 polymer composite film at 320 K. The calculation of Li+ ion transference number was carried out by the combination of A.C. impedance and D.C. polarization methods and is found to be 0.52 for PVA:LiAsF6 (75:25) + 5 wt% TiO2 film. Optical properties such as direct energy gap, indirect energy gap, and optical absorption edge values were investigated in pure PVA and salt complexed PVA films from their optical absorption spectra in the wavelength range of 200–600 nm. The absorption edge was found at 5.76 eV for undoped film, while it is observed at 4.87 and 4.70 eV for 20 and 25 wt% LiAsF6 doped films, respectively. The direct band gaps for these undoped and salt doped PVA films were found to be 5.40, 5.12, and 4.87 eV, respectively, whereas the indirect band gaps were determined as 4.75, 4.45, and 4.30 eV. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

17.
利用静电纺丝技术制备了聚吲哚/聚丙烯腈(PIN/PAN)聚合物基电解质膜,代替纸基铝空气电池中的纤维素纸(C-P),并应用于固态铝空气电池。探究了PIN含量对电解质膜离子电导率及吸液率的影响。采用SEM和FTIR对PIN/PAN聚合物基电解质膜表面形貌及化学组成进行分析。借助电化学工作站和电池测试系统,分析了电解质膜离子电导率及固态铝空气电池放电特性。结果表明,采用PIN/PAN聚合物基电解质膜可有效提升固态铝空气电池性能,在3 mA.cm-2、5 mA.cm-2、7 mA.cm-2电流密度下,放电时长比纸基铝空气电池分别提升了21%、27%、34%,且放电时长与电解质膜的吸液率及离子电导率相关。其中4%PIN/PAN聚合物基电解质膜离子电导率可达6.7×10-4 S.cm-1,同时对碱性溶液具有良好的吸附能力,吸液率最高可达496%,为纤维素纸的3.2倍。  相似文献   

18.
The purpose of this article was to develop new membranes with a high selectivity and permeation rate for separation of an alcohol/water system. Crosslinked alginate composite membranes were prepared by casting an aqueous solution of alginate and 1,6‐hexanediamine (HDM) onto a hydrolyzed microporous polyacrylonitrile (PAN) membrane. The influence of hydrolysis of the support membrane and crosslinking agent content in a dense layer on the selectivity and flux was studied and it was shown that both could improve the separation performance of the composite membrane greatly. The countercation of alginate coatings as a dense separating layer also influenced the separation properties of the membrane, which was better for K+ than for Na+. This novel composite membrane with K+ as a counterion has a high separation factor of 891 and a good permeation rate of 591 g m−2 h−1 for pervaporation of a 90 wt % ethanol aqueous solution at 70°C. At the same time, SEM micrographs showed that the pore structure of the PAN microporous membrane is changed by hydrolysis. The reason for the influence of the preparation conditions on the separation performance of the novel membrane is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3054–3061, 2000  相似文献   

19.
Synthesis, characterization, and amidoximation of diaminomaleonitrile-functionalized polyvinyl alcohol (PVA) grafts were studied. Ceric ammonium nitrate (CAN) was used as an initiator in an aqueous nitric acid medium under N2 atmosphere. Optimum conditions for grafting were as follows: monomer concentration [DAMN] = 1.4M, [CAN] = 16 × 10−2 mol/L, T = 50°C, and t = 2 h. Water uptake of the PVA graft films increased with the increase of grafting yield. The imparted cyano group of the grafted PVA polymer chains (with degree of grafting up to 136%) was converted into amidoxime group by the reaction with hydroxylamine hydrochloride. The grafted polymers were characterized by FTIR spectroscopy, differential scanning calorimetry, and thermal gravimetric analysis. The grafted PVA films are more thermally stable than the ungrafted PVA membrane, because the grafted membrane showed a single degradation pattern despite having two components. A decrease in Tg values is observed as the grafting yield of copolymers increases indicating the incorporation of polydiaminomaleonitrile chains in amorphous copolymers with higher thermal stability. The prepared amidoximated DAMN136-g-PVA was investigated for its properties in removing heavy toxic metals, such as Pb2+, Cd2+, Zn2+, Fe3+, Cu2+, Ni2+, and Co2+ from water. The amidoximated film is characterized by a considerably greater binding ability with respect to heavy metals. The nature of the metal ion also has great importance in the amount binding to the polymeric material. The kinetics of the sorption/desorption process for Co2+, Ni2+, and Zn2+ were investigated. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Highly transparent and conducting polypyrrole–(PPy–N) and polyaniline–nylon 6 (PAN) composite films could be easily obtained by immersing nylon 6 films containing pyrrole or aniline into an oxidant solution such as aqueous FeCl3 solution or aqueous (NH4)2S2O8 solution containing HCl. The conductivity, transmittance, and mechanical properties of these composite films were affected by the preparative conditions. The maximum conductivity and transmittance of the PPy–N composite films were 10?3 S/cm and about 75% at 550 nm, and in the case of the PA–N composite films, 10?2 S/cm and 75%, respectively. The morphology of PPy–N and PA–N composite films depended on the polymerization conditions, which might be due to the difference in the polymerization speed of pyrrole or aniline in polymer matrices. These PPy–N and PA–N composite films exhibited good environmental stability and excellent mechanical properties. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号