首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The objective of this work was to develop optically transparent glass fiber reinforced poly(methyl methacrylate) (PMMA) composites by matching the refractive index of the glass fiber reinforcement to that of the PMM, A matrix, thereby minimizing the quantity of light which is normally scattered and reflected at the interface of dissimilar materials. A pressure curing process is described for preparing composites 10 by 15 by 0.6 cm thick and containing up to ∼ 35% glass fiber. By curing at 65°C under 6.9 MPa N2 for 18 H, composites have been produced with optical quality surfaces and flexural strengths more than seven times that of commercial PMMA of the same thickness. A transparent composite containing 10.4 vol% of 13 μm diameter fiber had an 84% optical transmission (92% maximum for PMMA) at 600 nm and 25°C.  相似文献   

2.
A novel process has been developed to manufacture poly(methyl methacrylate) (PMMA) pultruded parts. The mechanical and dynamic mechanical properties, environmental effects, postformability of pultruded composites and properties of various fiber (glass, carbon and Kevlar 49 aramid fiber) reinforced PMMA composites have been studied. Results show that the mechanical and thermal properties (i.e. tensile strength, flexural strength and modulus, impact strength and HDT) increase with fiber content. Kevlar fiber/PMMA composites possess the highest impact strength and HDT, while carbon fiber/PMMA composites show the highest tensile strength, tensile and flexural modulus, and glass fiber/PMMA composites show the highest flexural strength. Experimental tensile strengths of all composites except carbon fiber/PMMA composites follow the rule of mixtures. The deviation of carbon fiber/PMMA composite is due to the fiber breakage during processing. Pultruded glass fiber reinforced PMMA composites exhibit good weather resistance. They can be postformed by thermoforming, and mechanical properties can be improved by postforming. The dynamic shear storage modulus (G′) of pultruded glass fiber reinforced PMMA composites increased with decreasing pulling rate, and G′ was higher than that of pultruded Nylon 6 and polyester composites.  相似文献   

3.
Evidence is presented relating the interfacial bonding strength and the optical transmission of transparent glass fiber reinforced PMMA composites. The temperature dependent (20° to 50°C) optical transmission of composites that contained uncoated 13 μm glass fibers and 13 μm glass fibers coated with divinyltetramethyl disilazane or 3-(trimethoxysilyl)propyl methacrylate was found to decrease in the same order as the bond strength of the PMMA/glass fiber interface, namely, trimethoxy silane coated fiber, disilazane coated fiber, and uncoated fiber. SEM photographs showed similar fracture surfaces, clean fiber pull-out, and no apparent bonding of the glass fiber to the PMMA for the composites containing uncoated and disilazane coated fiber, whereas, the composite containing trimethoxy silane coated fiber showed virtually no clean fiber pullout. Additional evidence for differences in the bonding strength is seen in the degradation (penetration of water and fiber whitening) on aging at 23°C in air or water for composites containing uncoated fiber (most degradation), disilazane coated fiber (slight degradation), and trimethoxy silane coated fiber (no degradation). The optical transmission between 20° and 30°C at 600 to 800 nm for the composite containing trimethoxy silane coated fiber decreased the least with increasing temperature (from ∼85% to 70%) while the composite containing uncoated fiber decreased the most (from ∼85% to 32%).  相似文献   

4.
This paper presents a novel process developed to manufacture poly(methyl methacrylate) (PMMA) pultruded composite. The mechanical, thermal, and dynamic mechanical properties, environmental effect, postformability of various fiber (glass, carbon, and Kevlar 49 aramid fiber) reinforced pultruded PMMA composites have been studied. Results show mechanical properties (i.e., tensile strength, specific tensile strength, tensile modulus, and specific flexural strength) and thermal properties (HDT) increase with fiber content. Kevlar fiber/PMMA composites possess the highest specific tensile strength and HDT, carbon fiber/PMMA composites show the highest tensile strength and tensile modulus, and glass fiber/PMMA composites show the highest specific flexural strength. Pultruded glass-fiber-reinforced PMMA composites exhibit good weather resistance. These composite materials can be postformed by thermoforming under pressure, and mechanical properties of postformed products can be improved. The dynamic shear storage and loss modulus (G′, G″) of pultruded glass-fiber-reinforced PMMA composites increased with decreasing pulling rate, and their shear storage moduli are higher than those of pultruded Nylon 6 and polyester composites.  相似文献   

5.
The properties of poly(methyl methacrylate) (PMMA)‐based graded‐index polymer optical fiber (GI POF), including the thermal stability, thermal humidity, and mechanical properties, were studied for polymer optical fiber research and applications. The glass‐transition temperature of the fiber core was 103°C in the presence of the dopant, which was close to that of the PMMA matrix without the dopant. A special refractive‐index profile derived from the distribution of the dopant was stable at 60°C. Moreover, GI POF exhibited good mechanical properties. The excellent performance indicated that GI POF could be applied not only for indoor use but also for outdoor use. However, PMMA‐based GI POF exhibited poor hot‐water/humidity resistance. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2330–2334, 2004  相似文献   

6.
Positive temperature coefficient of resistivity (PTCR) behavior of poly(methyl methacrylate) PMMA/silver (Ag)‐coated glass bead composites has been investigated with reference to the conventional PMMA/carbon black (CB) composites. The PMMA/CB composites showed a sudden rise in resistivity (PTC trip) at 115°C, close to the glass transition temperature (T g, 113°C) of the PMMA. However, the PTC trip temperature (92°C) of PMMA/Ag‐coated glass bead composites was appeared well below the T g of PMMA. The room temperature resistivity and PTC trip temperature of the composites were also very much stable upon thermal cycling. Addition of 1 phr of nanoclay increased the PTC trip temperature of PMMA/CB composites to 120°C, close to the T g (118°C) of PMMA/clay nanocomposites, while PMMA/clay/Ag‐coated glass bead nanocomposites showed the PTC trip at 98°C. We proposed that the mismatch in coefficient of thermal expansion (CTE) between PMMA and glass beads played a key role that led to a disruption in continuous network structure of Ag‐coated glass beads even at a temperature well below the T g of PMMA. The decrease in dielectric permittivity of PMMA/Ag‐coated glass bead composites on increasing frequency indicated possible use of the PTC composites as dielectric material. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

7.
研究了长玻纤和短玻纤增强聚甲基丙烯酸甲酯(PMMA)复合材料的动态流变性能.结果表明,由于长玻纤比短玻纤更易发生缠结,长玻纤增强PMMA复合材料具有更高的动态模量和动态粘度,且其模量和粘度具有更高的浓度依赖性;长玻纤增强PMMA复合材料时,随着玻纤含量的增加,剪切变稀现象更加明显.  相似文献   

8.
The thermal aging between 25 and 115°C of hot pressed glass fiber reinforced poly (methy1 methacrylate)(PMMA) transparent composites was studied as a function of the temperature and time of hot pressing. Thermal aging at near the Tg of the PMMA matrix caused dimensional changes and a reduction in optical transmission and clarity. The reduction in transmission was attributed to gas bubbles that formed in the matrix, which may be due to the evaporation of residual MMA monomer or low Tg (∼ 75°C) polymer in the composites during aging. Thermal cycling between 25 and 100°C by eliminating low Tg of the PMMA matrix establishes the upper temperature limit to which the composite can be exposed without seriously damaging its optical properties.  相似文献   

9.
用真空浸渍法成功制备出了超高分子量聚乙烯纤维/有机玻璃(UHMWPE/PMMA)复合材料,并对基体材料PMMA,单向超高分子量聚乙烯纤雏/有机玻璃复合材料以及三维编织超高分子量聚乙烯纤维/有机玻璃(即UHMWPE3D/PMMA)复合材料的摩擦磨损性能进行了研究。实验证明UHMWPE/PMMA复合材料具有优良的摩擦磨损性能。经过纤维增强的复合材料的摩擦磨损性能优于基体材料,三维编织纤维增强的复合材料其磨损远小于单向纤维增强的复合材料,但其摩擦系数没有显著变化。  相似文献   

10.
Poly(methyl methacrylate) (PMMA) film was cast from solution in benzene (4% W/V). Various samples of iodine-doped PMMA films were prepared by adding different amount of iodine, namely, 0.5, 1, 2, and 8% (w/w), respectively, to PMMA solution in benzene. The structures of pristine and doped PMMA were investigated using analysis of their infrared spectra and wide-angle X-ray diffraction analysis. The refractive index of pristine PMMA is almost equal to that of glass. Changes in the refractive index of various doped PMMA samples have been determined from their reflectance and transmission spectra in ultraviolet–visible range. It has been observed that the refractive index increases at low concentrations of doping, and it is maximum for 1% iodine doping. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1627–1631, 1998  相似文献   

11.
基于流变学原理和质量传递原理的分析,建立了一个能够描述渐变型聚合物光纤(GIPOF)共挤扩散制备过程的数学模型。该模型采用基于温度和掺杂剂浓度修正的Carreau黏度方程,利用计算流体动力学软件Fluent模拟求解出拉丝后光纤折射率分布。以聚甲基丙烯酸甲酯为芯皮层原料、苯硫醚为掺杂剂制备了GIPOF,并通过聚焦法测得光纤折射率分布。模拟结果与实验结果基本相符,表明该模型可用来预测和控制光纤折射率分布情况。  相似文献   

12.
Glass fibers pulled from multihole bushings can have a slight difference in thermal history that causes a distribution in the refractive index that can be narrowed by annealing the fibers. The kinetics for the initial stage change in refractive index for fiber annealed between 300° and 500°C are best described by a second-order reaction with an activation energy of 120° 17 kj/mol. The improved uniformity in refractive index for annealed fibers is indicated by a decrease in the half-height width of the optical transmission versus temperature curve for glass fiber immersed in a liquid. The standard deviation in the refractive index of glass fibers with a bimodal distribution in diameter decreases from 8 × 10-4≤0.0002 to 4 × 10-4 0.0002 after the fibers are annealed at 400°C for 1 h.  相似文献   

13.
在自制装置中用硅烷偶联剂KH550对长玻纤(LGF)进行表面处理后,采用熔融共混法制备了尼龙66/长玻纤复合材料。采用微机全自动热膨胀系数测定仪记录了玻纤增强尼龙66复合材料的热膨胀曲线,分析了玻纤含量、温度对复合材料热膨胀系数的影响,结果表明,随着玻纤含量的增加,复合材料的热膨胀系数显著下降,最大降低了74.2%;随着温度的升高,复合材料的热膨胀系数先增大后减小最后趋于平衡,转折温度在37℃左右。测试了复合材料的力学性能,结果显示复合材料的拉伸强度、弯曲强度和缺口冲击强度随玻纤含量的增加而大幅度提高,最大分别增加了173%、186%和283%。通过扫描电镜观察到玻纤嵌入尼龙66基体中,与尼龙66形成了良好的界面黏结。  相似文献   

14.
The fraction of four-coordinated boron was observed to increase from 10% in a rapidly cooled aluminum borosilicate glass fiber to 16% in the same fiber after it was annealed; the refractive index also increased. The index of the annealed fiber agreed with that of the bulk glass. Crystallization was not observed in the annealed fiber. It is concluded that boron coordination is temperature dependent and associated with structural relaxation.  相似文献   

15.
The influence of oil palm empty fruit bunch (OPEFB) fiber and oil palm empty fruit bunches grafted with poly(methyl methacrylate) (OPEFB‐g‐PMMA) on the tensile properties of poly(vinyl chloride) (PVC) was investigated. The OPEFB‐g‐PMMA fiber was first prepared with the optimum conditions for the grafting reaction, which were determined in our previous study. To produce composites, the PVC resin, OPEFB‐g‐PMMA fiber or ungrafted OPEFB fiber, and other additives were first dry‐blended with a laboratory blender before being milled into sheets on a two‐roll mill. Test specimens were then hot‐pressed, and then the tensile properties were determined. A comparison with the composite filled with the ungrafted OPEFB fiber showed that the tensile strength and elongation at break increased, whereas Young's modulus decreased, with the incorporation of 20 phr OPEFB‐g‐PMMA fiber into the PVC matrix. The trend of the tensile properties obtained in this study was supported by functional group analysis, glass‐transition temperature measurements, and surface morphological analysis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
This paper is to study the effect of basalt fiber on morphology, melting and crystallization, structure, mechanical properties, melting and crystallization of PVDF/PMMA composites using scanning electron microscopy (SEM), X‐ray, differential scanning calorimeter (DSC), dynamical mechanical analysis (DMA), etc. Basalt fiber may disperse well in PVDF/PMMA matrix and form compact fiber network, and this makes tensile and flexural strength of fiber reinforced PVDF/PMMA composites get to the maximum value of 62 and 102 MPa, respectively. However, the mechanical properties begin to decrease when basalt fiber content exceeds 20 wt %. The α and β phase of PVDF can coexist in composites, and basalt fiber and PMMA can induce β phase of PVDF. The melting temperature of PVDF in composites is kept unchanged, but the degree of crystallinity of composites increases as basalt fiber content increase, and then declines when fiber content exceeds 20%. The DSC results confirm that the nucleation ability of PVDF is enhanced by basalt fiber. Also, the heat resistance of PVDF/PMMA composite is improved from 133 to 146.1°C due to basalt fiber. The DMA shows that basalt fiber increases the storage modulus of PVDF/PMMA composite, and the loss peak of PMMA increases from 116.1 to 130°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40494.  相似文献   

17.
Nanopigmented and fiber‐reinforced poly (methyl methacrylate) (PMMA) were synthesized for denture bases, by incorporating E‐glass fibers, flock fibers, or polyethylene fibers into the PMMA powder formulation to improve the flexural behavior and porosity; decreasing the Candida albicans adherence and being noncytotoxic. The commercial acrylic resin, Lucitone 199 was used as a control group. Scanning electron microscopy analysis was performed to the PMMA particles and the reinforcing fibers. Flexural strength increased by adding E‐glass fibers in the PMMA powder as compared to flock and polyethylene fibers. The reinforced PMMA with flock fibers showed the lower porosity even smaller than Lucitone 199. The synthesized PMMA and the fiber reinforced nanopigmented PMMA groups reduced significantly the C. albicans adherence when compared to the commercial acrylic resin. All the tested groups were found to be nontoxic materials after being in contact with mouse fibroblast culture during 24 h, showing that these novel nanostructured composites are suitable for producing adequate and nontoxic reinforced materials with antimicrobial properties for dentistry applications. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Long glass fiber‐reinforced polypropylene composites were prepared using self‐designed impregnation device. Effects of the different injection temperature on mechanical properties, crystallization, thermal, and dynamic mechanical properties of long glass fiber‐reinforced polypropylene composites were discussed. The differential scanning calorimetry (DSC) results indicate that the melting peak temperature of PP/LGF composites gradually reduced, however, the crystallinity of PP/LGF composites gradually increased with increasing injection temperature. Thermo‐gravimetric analyzer (TGA) results demonstrate that with increasing injection temperature, the temperature of the PP/LGF composites melt increased, the viscosity of the PP/LGF composites melt lowered, the mold filling of the PP/LGF composites melt was easy, the shear force of glass fiber was relatively low, which made the residual length of glass fiber in products increase. Dynamic thermal mechanical analyzer (DMA) results show that the storage modulus of PP/LGF composites is the highest while the injection temperature is at 290°C, and the peak value of tan σ of PP /LGF composites at 290°C is minimal, which indicates that the mechanical properties of PP /LGF composites at 290°C is the best. What' more, the injection temperature at 290°C significantly ameliorated “glass fiber rich skin” of products of glass fiber‐reinforced composites. J. VINYL ADDIT. TECHNOL., 24:233–238, 2018. © 2016 Society of Plastics Engineers  相似文献   

19.
Hydroxy‐substituted aromatic nitrone derivatives were used for the photochemical control of the refractive index of poly(methyl methacrylate) (PMMA) films. Upon irradiation with 366‐nm light in solution, these derivatives underwent rearrangement reactions, which eventually produced N,N‐diarylformamide derivatives in quantitative yields. Similar photoreactions of the aromatic nitrones in the PMMA films lowered the refractive index of the films by as much as 0.014. The magnitude of the observed refractive‐index change was enough for hydroxy‐substituted nitrones to be used as additives for the fabrication of graded‐index‐type polymer optical fibers. In addition, the refractive index of the PMMA films remained almost constant at any conversion of the starting nitrone derivatives for at least 70 days at room temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2517–2520, 2004  相似文献   

20.
利用熔融共混法制备了玻璃纤维(GF)增强聚苯硫醚(PPS)复合材料.采用毛细管流变仪对PPS/GF以及PPS/GF/CaSO4晶须复合材料的流变行为进行了表征.结果表明,PPS/GF复合材料的黏度随着剪切速率的增大而逐渐降低,呈现出明显的"剪切变稀"行为.随着GF用量的增加,PPS/GF复合材料的黏度逐渐升高,非牛顿指数n值逐渐降低.晶须用量为5份时,PPS/GF/CaSO4晶须复合材料的黏度最低,结构黏度指数较低,纺丝加工性能较好.复合材料的黏度随晶须用量的继续增加而增加.在310~315℃时复合材料的结构黏度指数下降幅度最小,表明该温度范围熔体流动最稳定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号