首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bombyx mori silk fibers were chemically modified by acylation with aromatic acid anhydrides, such as phthalic and o-sulfobenzoic anhydrides. We examined the reactivity of these modifying agents toward silk fibers, the physical and thermal properties, and the dyeing behavior with acid and cationic dyes. The o-sulfobenzoic anhydride was more reactive toward silk fibroin than phthalic anhydride. The amount of both basic and acidic amino acid residues decreased after modification with aromatic acid anhydrides. The moisture regain of silk treated with phthalic anhydride remained almost unchanged, while that of the samples modified with o-sulfobenzoic anhydride increased linearly as the weight gain increased. Chemically modified silk fabrics showed improved crease recovery behavior, even though phthalic anhydride seemed more effective at comparatively low weight gain. The modification of silk with o-sulfobenzoic anhydride caused a drastic a reduction of acid dye uptake and enhanced the affinity of silk for cationic dye. Silk fibers did not show any significant change in thermal behavior, regardless of the modification with o-sulfobenzoic anhydride. Silk fibers modified with phthalic anhydride showed on differential scanning calorimetry (DSC) curves a minor and broad endothermic peak at around 210°C, attributed probably to the breaking of the crosslinks formed between adjacent fibroin molecules.  相似文献   

2.
Tussah silk fibroin was chemically modified by acylation with aliphatic, aromatic, and hydrophobic acid anhydrides. The tussah silk fibers were pretreated by immersing them in a lithium thiocyanate (LiSCN) solution and then acylated in dimethylformamide (DMF) at elevated temperatures. Using this method, acylated tussah silk fibers with weight gains of 8–22% could be obtained. The pretreatment with LiSCN was necessary to promote the acylation. Without it, the reaction did not proceed. The optimum temperature and reaction time of the pretreatment was 55°C and 60 min, respectively. When examining the physical properties and the thermal behavior of both pretreated and acylated tussah silk, it was found that the mechanical properties and the position of the major DSC endothermic peak remained unchanged, regardless of pretreatment and acylation. The moisture regain of the pretreated tussah silk increased slightly while the moisture regain of the acylated silk decreased linearly with increasing weight gain. The chemical modification allows for a wide control of the tussah silk fiber's properties, making it possible to use tussah silk for the development and production of novel textile and biomaterials. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 382–391, 2000  相似文献   

3.
Tussah silk fibers were graft-copolymerized with methacrylamide (MAA) and 2-hydroxyethyl methacrylate (HEMA) in aqueous media, using a chemical redox system as an initiator. High weight gain values were obtained with both grafting agents (up to 175%). The extent of homopolymerization was negligible for the MAA grafting system over the entire range of monomer–silk ratios examined, while polymer deposition on the fiber surface occurred when the HEMA–silk ratio exceeded 0.5% (w/w). The moisture content of poly(MAA)-grafted silk fibers was enhanced by grafting. Breaking load, elongation at break, and energy decreased at low weight gain (0–20%) and then remained rather constant. The DSC curves of poly(MAA)-grafted silk showed a new endotherm at about 280°C, due to the melting of poly(MAA) chains. The loss modulus peak of poly(HEMA)-grafted silk fibers broadened and shifted to a lower temperature, showing a tendency to split into two peaks at high weight gain. On the other hand, grafting with poly(MAA) induced a noticeable upward shift of the loss peak. The TMA curves showed that grafting with poly(MAA) resulted in a higher extent of fiber contraction from room temperature to about 250°C. Moreover, the intensity of the final contraction step at about 350°C decreased with increasing weight gain and shifted to a lower temperature. The Raman spectra of grafted fibers were characterized by overlapping of the characteristic lines of both silk fibroin and polymer, the latter showing an intensity proportional to the amount of weight gain. Among the conformationally sensitive vibrational modes of tussah silk fibroin, the amide III range was significantly modified by grafting with both poly(MAA) and poly(HEMA). © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1393–1403, 1998  相似文献   

4.
Silk and wool fibers were acylated with two acid anhydrides, dodecenylsuccinic anhydride (DDSA) and octadecenylsuccinic anhydride (ODSA), at 75°C with N,N-dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) as the solvent, the latter of which allowed higher weight gains to be reached. The weight gain and acyl content of wool was always higher than that of silk. Tensile properties of silk remained unchanged regardless of weight gain, whereas wool displayed a noticeably higher extensibility at high weight gain. Fine structural changes of acylated wool were detected by DSC analysis. Moisture regain and water retention of acylated silk and wool decreased significantly, whereas water repellency increased. SEM analysis showed the presence of foreign material firmly adherent to the surface of both silk and wool, whose amount increased with increasing weight gain. These deposits were attributed to the presence of the modifying agents at the fiber surface on the basis of the characteristic IR bands. The possible application of silk and wool fibers acylated with DDSA or ODSA for the preparation of water-repellent textile materials is discussed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2832–2841, 2001  相似文献   

5.
The structure and physical properties of silk fibroin fibers graft-polymerized with methacrylonitrile (MAN) were analyzed in relation to the weight gain on the basis of the results of tensile properties as well as of thermal analysis and X-ray diffractometry. The solubility of the specimen in NaOH solution and the moisture absorption decreased slightly with the duration of the MAN treatment. However, the polymerizing treatment with MAN did not affect significantly the tensile properties, i.e., strength and elongation at break of the original fibers. The position of the endothermic peak attributed to the thermal decomposition of the silk fibroin shifted to higher temperatures when the weight gain exceeded 25%, and a constant value at 328°C was obtained above a weight gain of 40%. Wide-range X-ray diffraction diagram of silk fibers with a weight gain of 10% showed diffraction maxima at the equator corresponding to the molecule oriented crystal structure of the silk fiber, in addition to the spots on a series of hyperbolic arcs arranged symmetrically at about the equator, which are associated with the crystalline form of the MAN polymer copolymerized in the specimen. Crystalline structure of the silk fiber remained unchanged essentially regardless of MAN treatment.  相似文献   

6.
Changes in physical properties of silk fibers, grafted with methacrylonitrile (MAN), were investigated as a function of the weight gain. The weight gain increased steadily during the first 60 min of reaction and gradually attained an equilibrium value (60%) after about 4 h. The initial tensile resistance of silk fibers decreased by MAN grafting. The crystalline structure of silk fibers remained unchanged, regardless of MAN grafting, however. a minor and broad peak appeared in the X-ray diffraction curves of MAN-grafted silk fibers with a weight gain of 60%, corresponding to the unoriented MAN polymer attached inside the fibers. Molecular orientation of silk fibroin chains in the crystalline regions, evaluated from X-ray diffraction curves, did not change significantly, while both birefringence and isotropic refractive index decreased as the weight gain increased, implying that MAN polymer attached preferentially to the amorphous and not to the crystalline regions. Dynamic vis-coelastic measurements showed that the position at which the E′ value began to decrease shifted to a lower temperature as the weight gain increased. These findings suggest that the thermal movement of silk fibroin molecules was accelerated by the presence of the poly-MAN chains attached to the amorphous regions of silk fibroin fibers. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Silk fibers were graft-copolymerized with methacrylamide (MAA) and 2-hydroxyethyl methacrylate (HEMA) in aqueous media, using a chemical redox system as an initiator. High weight gains (300%) were obtained with both monomers, the weight gain being linearly related to the amount of monomer contained in the reaction system. The reaction efficiency attained 95–100%. The extent of homopolymerization was negligible for the MAA grafting system, while large amounts of poly-HEMA covered the surface of silk fibers beyond 70% weight gain. The fiber size increased linearly with the weight gain. The moisture content of MAA-grafted silk fibers was highly enhanced by grafting. The severe grafting conditions caused a partial degradation of the tensile properties of silk fibers, as well as of the degree of fiber whiteness. Following grafting, the breaking load slightly increased, while elongation at break and energy decreased. The decomposition temperature of grafted silk fibers shifted upwards. The Raman spectra of untreated silk fibers showed strong lines at 1667 (amide I), 1451, 1227 (amide III), 1172 and 1083 cm−1. Overlapping of the lines characteristic of both silk fibroin and grafted polymer was observed in the spectra of grafted silk samples. The vibrational mode of the amide III lines of silk fibroin was significantly modified by grafting. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Thermal behavior of the natural and chemically modified wool fibers (treated with sodium hydroxide and formic acid and reduced with sodium bisulfite and thioglycollic acid) and of the graft copolymers of natural and modified wool with methyl nethacrylate (MMA) monomer was studied using dynamic thermogravimetry in air at a heating rate of 6°C/min to 600°C. The thermograms showed three distinct regions of weight loss for all the cases. A comparison of the temperatures of various percentage decompositions reveals that the thermal stability increased slightly with chemical modification of wool as compared to natural wool. Caustic soda and sodium bisulfite probably forms more stable lanthionine linkages, whereas formic acid improves the thermal stability perphas by modifying the noncrystalline region of the fiber. In the case of natural wool after graft copolymerization with MMA, thermal stability improves up to 325°C probably owing to the formation of new crosslinks, but after 325°C the thermal stability decreases owing to early decomposition of the polymer as compared to wool fiber. Similar effects are observed in all the chemically modified fibers except in wool reduced with sodium bisulfite, where thermal stability is found to increase after grafting even at higher temperature. The thermal stability was also computed from the primary thermograms by calculating the integral procedural decomposition temperature; the results show that thermal stability increases slightly with chemical modification of wool as compared to natural wool. In the case of natural wool with graft copolymerization with MMA, the overall thermal stability decreases, because the decrease of thermal stability after 325°C seems to be more prominent than the increase in thermal stability before 325°C. The same effects are observed in all the chemically modified fibers, except for fibers reduced with sodium bisulfite, where the overall thermal stability increases slightly with increase in graft-on.  相似文献   

9.
Silk fabrics were modified by treatment with tannic acid (TA) solution or by acylation with ethylenediaminetetraacetic (EDTA) dianhydride. Kinetics of modification with TA and acylation with EDTA–dianhydride was investigated. The physico‐mechanical properties of silk fabrics acylated with EDTA–dianhydride remained unchanged regardless of chemical modification. The absorption of metal cations (Ag+, Cu2+) by untreated and modified silk fabrics was studied as a function of the kind of modifying agent, weight gain, and pH of the metal solution. The absorption of Cu2+ at alkaline pH was not significantly influenced by chemical modification of the silk substrate. The absorption of Ag+ by acylated silk remained at a level as low as untreated silk, while was enhanced by TA. The higher the content of TA, the higher the absorption of Ag+. With respect to the pH of the metal solution, the acylation with EDTA–dianhydride enabled silk to absorb and bind metal cations even in the acidic and neutral pH range, where tannic acid had no effect. Medium to high levels of metal desorption were exhibited by untreated and modified silk fabrics towards the metal cations, with the only exception of the silk–tannic acid–Ag complex, which displayed an extraordinary stability. All metal‐containing silks exhibited significant antibacterial activity. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 297–303, 2001  相似文献   

10.
This paper deals with the epoxide treatment of silk fabrics by the pad/batch method. The optimum reaction conditions, i.e., NaOH concentration, and reaction temperature were 2.5 g/L and 30°C, respectively. A weight gain of 8.5% was attained at a reaction time of 6 h. This value slightly increased to 10% after 24 h. The reactivity of tyrosine and basic amino acid residues was dependent on the reaction time and did not significantly differ from the results of epoxide-treated silk fiber by the conventional method in tetrachloroethylene. The moisture regain slightly decreased at 4% weight gain and then increased with the epoxide content, exceeding the value of the untreated control. The crease recovery of the epoxide-treated silk fabrics measured in the wet state was significantly improved, whereas that in the dry state was almost unchanged. The rate of photoyellowing of the epoxide-treated silk fabrics by the pad/batch method was reduced significantly compared with that of the untreated control. Among the mechanical properties, elongation at break and tensile modulus remained unchanged, whereas the tensile strength slightly increased following the epoxide reaction. The thermal properties were evaluated by DSC and TGA and on the basis of the dynamic viscoelastic measurements. The DSC curve of the epoxide-treated sample showed a slight increase of the decomposition temperature of silk fibroin. The rate of weight loss determined by TGA remained unchanged regardless of the chemical modification, whereas the peak of loss modulus became broader and shifted to lower temperature. The X-ray diffractograms showed that the crystalline structure of silk fibers was not affected by the reaction with epoxides. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
In this article, we propose a new modification method for obtaining porous silk fibers with excellent wet elastic resilience and flexibility. Bombyx mori silks were modified by calcium‐salt treatment and subsequent epoxy crosslinking with glycerin triglycidyl ether. The effects of temperature, time, and catalyst (sodium carbonate) on the crosslinking reaction of the silk fibers were investigated, and the best conditions of reaction were determined as a temperature of 120°C, a crosslinking agent concentration of 7%, and immersion for 1 h with 2% Na2CO3 solution before the crosslinking reaction. The change in the structure and the physical properties of the silk fibers after calcium‐salt treatment and epoxy crosslinking was studied. Separating behavior of the microfibers occurred on the surface of the silk fiber after calcium‐salt treatment, and a porous structure formed in the interior of the silk. This porous structure of the silk was enlarged by subsequent epoxy crosslinking, and accordingly, the moisture conduction of the silk fibers improved remarkably. The breaking strength, breaking elongation, and wet elastic resilience of the silk fibers increased evidently after modification, and the modified silks exhibited a better flexibility. The conformation of silk fibroin fibers changed from β sheet to random coil after calcium‐salt treatment, whereas the β‐sheet content in the silk fibers increased after subsequent epoxy crosslinking. The significant reductions in the crystallinity and crystalline sizes in the silk fibers after the crosslinking reaction indicated that the crosslinking reaction occurred within the crystalline region because the calcium‐salt treatment increased the reaction accessibility. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
The chemical reactivity of epoxide molecules toward silk fibroin was investigated by determining the rate of conversion of reactive amino acid residues. Significant differences were found between two different bifunctional epoxides, diglycidyl ethers of ethylene glycol (E) and resorcinol (R), the former reacting at a higher extent with arginine and tyrosine. The moisture regain decreased by reaction with epoxides, at a variable rate and extent, according to the hydrophobic/hydrophilic properties of epoxides. A two-step behavior was observed when moisture regain values relating to the silk content in modified silk, fibers were plotted as a function of the weight gain. Dynamic mechanical data showed that the major loss peak became broader and its temperature shifted to lower values following the increase of weight gain. The loss peak temperatures showed a linear relationship with the amount of weight gain. The fine structural changes induced by reaction with eposides will be discussed in terms of chemical and steric factors of the epoxides, as well as of epoxide location within the different structural domains of silk fibers. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Silk fibers and membranes were acylated with octadecenylsuccinic anhydride (ODSA) at 75°C for different times. Swelling [N,N‐dimethylformamide (DMF) and dimethyl sulfoxide (DMSO)] and nonswelling (xylene) solvent media were used for the reaction. Silk membranes that reacted in DMF or DMSO displayed faster reaction kinetics and attained higher weight‐gain values than fibers. The effect of the solvent on the reaction yield was in the following order: DMSO > DMF ? xylene. The Fourier transform infrared spectra of acylated silk samples showed the characteristic absorption bands of the anhydride at 2990, 2852, 1780–1700, and 1170 cm?1. The intensity of the latter band, which increased linearly with the weight gain, was used as a marker for evaluating the reaction kinetics of the samples acylated in the nonswelling medium. The moisture regain and water retention of silk fibers acylated with ODSA decreased significantly, regardless of the solvent system used. Accordingly, the water repellency increased. Acylation induced an increase in the thermal stability of the silk fibers and membranes. Fine particles adhering to the surfaces of the silk fibers acylated in xylene were detected by scanning electron microscopy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 324–332, 2003  相似文献   

14.
A series of 2-hydroxyethylmethacrylate (HEMA)/methacrylamide (MAA)-grafted silk fibers obtained in various comonomer compositions was prepared and their structural characteristics were studied by X-ray diffractometry, differential scanning calorimetry, and scanning electron microscopy. HEMA/MAA-grafted silk fibers with a graft yield of about 60% obtained in a HEMA/MAA mixture system containing 20% of HEMA and 80% of MAA on a weight basis showed endothermic peaks at 280 and 420°C (shoulder form), which are attributed to the thermal decomposition of the MAA and HEMA polymers, respectively, in addition to the thermal decomposition peak of the silk fibroin fiber which appeared at 323°C. These DSC results suggest that the HEMA/MAA-grafted silk fiber showed a low compatibility in the relation between the silk fibroin molecules and HEMA and/or MAA polymers. The crystalline structure of the HEMA/MAA-grafted silk fiber remained unchanged regardless of the HEMA/MAA grafting ratio even when the graft yield value reached 120%.  相似文献   

15.
The structural characteristics and physical properties of epoxide-treated tussah silk fibers from Antheraea pernyi silkworm are discussed in relation to the increasing weight gain values. Ethyleneglycol diglycidylether (E) and glycerin diglycidylether (G) were used as modifying agents. The noticeably high weight gain values (about 140%) obtained were attributed to the catalytic effect of SCN? anion absorbed by the fibers during the pretreatment under reduced pressure conditions. The amino acid analysis showed that epoxide G exhibited a slightly higher reactivity toward tyrosine, while arginine preferably reacted with epoxide E. The peak of loss modulus (E″) determined by dynamic viscoelastic measurements became broader and its position linearly shifted to lower temperature when the weight gain increased, and a minor peak appeared in the low-temperature region below 50°C. Differential scanning calorimetry (DSC) thermograms showed that the position of the decomposition peak of modified silk fibers shifted to lower temperature with increasing weight gain values. The minor and broad endothermic peaks, appearing in the reference sample at about 234 and 290°C, disappeared by epoxide treatment. X-ray diffraction patterns of tussah silk fibers suggested that the epoxide treatment does not affect directly the crystalline regions but causes a decrease of molecular orientation in the amorphous regions. Both briefringence (Δn) and isotropic refractive index (niso) of tussah silk fibers decreased by the reaction with epoxides, although with different rate and extent, confirming the decrease of average molecular orientation. The extent of decrease of strength and elongation depends on the kind of epoxide and on the weight gain value. Epoxide-treated tussah silk fibers did not show significant changes of surface characteristics as the weight gain values attained up to 60%.  相似文献   

16.
This paper deals with the physical properties of silk fibers grafted with 2-hydroxyethyl methacrylate (HEMA). Both tensile strength and elongation measured in the dry and wet states gradually decreased with increasing weight gain. The initial modulus of the grafted silk fibers in the dry state sharply increased in the weight gain range of 0–16%, then decreased to a lower value than the reference untreated sample. The refractive indices parallel and perpendicular to the fiber axis decreased, though the former showed a steeper slope. Accordingly, birefringence and isotropic refractive index also decreased, suggesting a lower degree of crystallinity and molecular orientation of grafted silk fibers. DSC, TMA, and TGA curves of the HEMA-grafted silk fibers indicated an increased higher thermal stability of silk fibers due to the HEMA grafting. The dynamic mechanical measurements showed that the thermally induced molecular movement of both amorphous and crystalline domains of silk fibers was enhanced by HEMA grafting. X-ray diffraction curves, however, implied that the crystalline structure of the silk fibroin remained unchanged regardless of HEMA polymerization. The introduction of HEMA polymer in silk fibers was evidenced by the infrared spectra, exhibiting the absorption bands characteristic of either the grafted HEMA polymer and the fibroin molecules with ordered β structure. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Poly(styrene) was grafted onto silk fibers in an aqueous medium, using ammonium persulphate initiator. Add-ons of up to 100% were achieved. The add-on increased linearly with the monomer concentration of the grafting system, all other factors remaining constant. The yield of the reaction attained about 80% and the extent of homopolymerization was negligible. The equilibrium moisture regain decreased noticeably with increasing add-on. Breaking load showed a tendency to increase in the 0–55% range of poly(St) content, while elongation at break and work of rupture decreased. The DSC endothermal peak at 315°C slightly shifted towards higher temperature by graft—copolymerization, and a new endothermal transition appeared beyond 400°C. TG measurements showed an increase of weight retention beyond 300°C for poly(St)-“grafted” silk fibers. The dynamic mechanical behavior was characterized by a shift to lower temperature of the loss modulus peak. The transverse dimension of the fibers increased with increasing add-on. The polymeric residue remaining after alkaline dissolution of silk fibroin showed a porous texture with a sponge-like morphology. The molecular weight of poly(St) removed from silk increased up to 120 kDa in the 0–55% add on range and then remained constant. The “Poly(St)/Silk” molar ratio increased linearly over the add-on range examined. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Structural characteristics of the methyl methacrylate (MMA)-grafted silk fibers using tri-n-butylborane as an initiator were analyzed by infrared spectroscopy and differential scanning calorimetry (DSC), and their refractive index and tensile properties were measured. Graft polymerization was promoted by FeCl3 pretreatment of the silk. The graft yield reached a maximum by the immersion in 4% FeCl3 solution for 1 min at 25°C. The infrared spectrum of poly(MMA)-grafted silk fibers showed overlapped absorption bands of silk fibroin with the β structure and of the grafted MMA polymer. A grafted silk fiber with graft yield of more than 140% exhibited two endothermic peaks at 321°C and 396°C on the DSC curve, attributed to the thermal decomposition of silk fibroin and grafted poly(MMA) chain, respectively. Refractive index measurements suggested that the molecular orientation and the crystallinity of the silk fiber decreased with increasing graft yield. Electron photomicrographs showed that silk was coated by grafted PMMA. The tensile strength of the grafted silk decreased rapidly by the grafting even at a lower level.  相似文献   

19.
This article deals with the characterization of blend films obtained by mixing silk fibroin (SF) and polyacrylamide (PAAm). The DSC curves of SF/PAAm blend films showed overlapping of the main thermal transitions characteristic of the individual polymers. The exothermic peak at 218°C, assigned to the β‐sheet crystallization of silk fibroin, slightly shifted to a lower temperature by blending. The weight‐retention properties (TG) of the blend films were intermediate between those of the two constituents. The TMA response was indicative of a higher thermal stability of the blend films, even at low PAAm content (≤25%), the final breaking occurring at about 300°C (100°C higher than pure SF film). The peak of dynamic loss modulus of silk fibroin at 193°C gradually shifted to lower temperature in the blend films, suggesting an enhancement of the molecular motion of the fibroin chains induced by the presence of PAAm. Changes in the NH stretching region of silk fibroin were detected by FTIR analysis of blend films. These are attributable to disturbance of the hydrogen bond pattern of silk fibroin and formation of new hydrogen bonds with PAAm. The values of strength and elongation at break of blend films slightly improved at 20–25% PAAm content. A sea–island structure was observed by examining the air surface of the blend films by scanning electron microscopy. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1563–1571, 1999  相似文献   

20.
Structural characteristics and physical properties of methyl methacrylate-grafted silk fiber from Bombyx mori were studied by X-ray diffractometry, differential scanning calorimetry (DSC), thermogravimetry, and scanning electron microscopy. Methyl methacrylate (MMA)-grafted silk fiber with a grafting yield of more than 30% showed two endothermic peaks at 320°C and 390–410°C, which are attributed to the thermal decomposition of silk fibroin and MMA polymer filled in the fiber, respectively. These DSC results indicate that MMA-grafted silk fiber showed a poor compatibility in the relation between the silk fibroin molecules and MMA polymer. The weight of the MMA-grafted silk fiber decreased as observed at 160°C on the thermogravimetric thermograms due to the evaporation of water from the sample with increasing graft yield. The crystalline structure of MMA-grafted silk fiber remained unchanged regardless of MMA grafting. Taking into account the X-ray diffraction patterns and the increasing graft yield with reaction time, it is assumed that the graft chains of MMA polymer have penetrated into a weak aggregate region and not in the crystalline region of silk fibroin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号