首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A number of resins were synthesised by reacting 2,4-dinitrophenylhydrazone derivatives of resacetophenone with substituted aromatic compounds and furfural in the presence of some acid and basic catalysts. The physicochemical properties of the resins are reported. The resins were characterised by their IR and NMR spectra. The ion exchange properties of the resins and the influence of electrolytes on the metal uptake of Cu2+, Co2+, Zn2+, Mn2+ and Mg2+ were studied. The distribution of metal ions at different pH are also reported. The thermal properties of the resins were evaluated by TGA, and kinetic parameters were evaluated using the Freeman–Anderson, Broido, Piloyan–Novikova, Coats–Redfern and Horowitz–Metzger methods.  相似文献   

2.
Some resins have been synthesized by reacting quinacetophenone with substituted benzoic acids and furfuraldehyde in the presence of basic catalysts. The resins have been characterized by IR spectra of the characteristic groups. The number average molecular weights of the resins have been evaluated by the conductance method. The solubility and viscosity behaviors of the resin copolymers have been determined. Cu+2, Ni+2, Co+2, Mn+2, and Mg+2 chelates have been prepared. The resins were shown to be selective ion-exchange resins for certain metal ions. A batch equilibrium method was used for studying the selectivity of the metal ions. The thermal behavior of the resins has been determined and the values of energy of activation of the resins were computed by using the Freeman–Anderson and Broido methods. The biological assays of some of the resin copolymers were found to be highly sensitive.  相似文献   

3.
《Reactive Polymers》1990,12(1):59-73
Eleven novel metal ion-chelating resins based upon porous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) have been prepared by direct reaction of the polymer with ligands containing an amino group. Those species involving a 2-pyridyl-2-imidazole and a 2-aminomethylpyridine proved to be the most interesting and, for comparison, polystyrene resin analogues of these were also produced. As expected from the literature, the above pyridine-containing ligands remained effective for the extraction of Cu2+ down to pH 2. Despite having superficially similar overall physical characteristics (particle size, surface area, porosity) the glycidyl methacrylate-based resins showed remarkably enhanced kinetic behaviour in the batch extraction of base metal ions such as Cu2+, with an extraction half life as low as ∼ 8 minutes, four times faster than a polystyrene-based analogue.In addition the glycidyl methacrylate-based resins displayed superior selectivity in the extraction of particular metal ions from feed liquors containing a mixture of metal ions. The most remarkable separation discovered was that of Cu2+ from Zn2+ where the glycidyl methacrylate-based species with the above ligands achieved essentially quantitative separation of Cu2+, even with Zn2+ present in 250 times excess. Extracted metal ions were rapidly and quantitatively eluted from these resins with 2 M H2SO4, and in the case of Cu2+ an acid strength of only 0.25 M was adequate.  相似文献   

4.
The macroreticular chelating resins containing both polyethylenepolyamine side chains and mercapto groups were prepared by the reaction of 2,3-epithiopropyl methacrylate-divinylbenzene macroreticular copolymer beads with polyethylene-polyamine. The adsorption behavior of metal ions on the obtained resins was then investigated. The amination of the macroreticular copolymer beads could effectively be carried out by treatment of the polymer beads with polyethylenepolyamine in organic solvent (benzene, terahydrofuran) or in the absence of organic solvent at 80°C or 100°C for 60 min. It was found that the adsorption capacity of the resins for metal ions is not only affected by the ion exchange capacity of the resins but also by the porosity of the resins. Hg2+, Ag+, and Cu2+ were effectively adsorbed on the resins even at a pH below 3, whereas Co2+, Ni2+, and Cd2+ were adsorbed at a pH above 3, Mn2+ at a pH above 7, and Ca2+ at a pH above 8. These metal ions adsorbed on the resins could easily be eluted with dilute mineral acid solution or dilute mineral acid solution containing thiourea.  相似文献   

5.
Macroreticular cation exchange resins containing phosphoric acid groups (RGP) were prepared by the reaction of glycidyl methacrylate–divinylbenzene copolymer [or poly(glycidyl methacrylate)]beads (RG) with phosphoric acid or phosphorous oxychloride, and the adsorption behavior of metal ions on the RGP was investigated. The phosphorylation of the polymer beads could be effectively carried out by treatment of the polymer beads with 85% phosphoric acid at 80°C for 3 h. The RGP obtained from glycidyl methacrylate–divinylbenzene (2 mol %) copolymer beads showed high cation exchange capacity, salt splitting capacity, and adsorption capacity for Cu2+, Zn2+, Cd2+, Ca2+, and Ag+. On the other hand, the RGP obtained from poly(glycidyl methacrylate)beads had high adsorption capacity for Al3+, Fe3+, and UO22+. The RGP prepared by treating the RG with phosphoric acid had a higher selective adsorption for Li+ than for Na+.  相似文献   

6.
Amberlite XAD‐2 has been functionalized by coupling through –SO2‐with ethylenediamine, propylenediamine, and diethylenetriamine to give the corresponding polyamine chelating resins I–III. The solid metallopolymer complexes of the synthesized chelating resins with Cu2+, Zn2+, Cd2+, and Pb2+ were synthesized. The polyamine derivatives and their metal complexes were characterized by elemental analysis, spectral (IR, UV/V, and ESR), and magnetic studies. The batch equilibrium method was utilized for using the chelating polyamines for the removal of Cu+2, Zn+2, Cd+2, and Pb+2 ions from aqueous solutions at different pH values and different shaking times at room temperature. The selective extraction of Cu+2 from a mixture of the four metal ions and the metal capacities of the chelating resins were evaluated using atomic absorption spectroscopy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1839–1846, 2005  相似文献   

7.
Work has been carried out screening hydrometallurgical resins for application in the valorization of industrially produced jarosite. Of the seven resins tested, anion exchange resins performed poorly for valuable metal recovery. Purolite S950+ and S957, along with a strong acid resin, show good extraction properties, but are selective for Fe3+ over the other (divalent) metals. Purolite S930+ (iminodiacetic acid-functionalized resin) demonstrates selectivity for Cu2+ over Fe3+, but poor selectivity for Ni2+, Zn2+, and Co2+. Dowex M4195 (bispicolylamine-functionalized resin) demonstrates promise for extracting metals of value away from a mixed metal pregnant liquor solution (PLS). A three-stage column-based recovery process is proposed for jarosite leachate treatment.  相似文献   

8.
In this study, tannin extracted from Terminalia chebula (Aralu) was used to produce tannin–phenol–formaldehyde resins. They were produced to obtain resins with different tannin to phenol ratio in an attempt to optimize the ion exchange capacities of resins produced. The resins made were sulfonated to improve their properties further. Bivalent cations, such as Zn2+, Pb2+, Ca2+, Mg2+, and Cu2+, were used to estimate the adsorption properties of both unsulfonated and sulfonated resins. The glass transitions of representative resins were estimated using differential scanning calorimeter thermograms. Fourier transform infrared spectroscopic analysis was used to gauge changes on resins by sulfonation and adsorption of cations. The glass transition values of unsulfonated, sulfonated, and metal‐adsorbed sulfonated resins showed a similar increasing trend with the increase of phenol content in the resin. The glass transition temperature values reach a plateau beyond the tannin/phenol ratio of 1 : 0.5, indicating the formation of large molar masses facilitating entanglements beyond that ratio. The phenol ratio of 1 : 0.5 has shown the highest adsorption capacity for all the metal ions used. The highest adsorption capacity was shown for sulfonated tannin–phenol–formaldehyde resin with the tannin/phenol ratio of 1 : 0.5 for Pb2+, which is 0.610 meq/g. The adsorption equilibrium data obtained using the column technique were found fitting Freundlich isotherm. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
8‐Hydroxyquinoline‐5‐sulfonic acid–thiourea–formaldehyde copolymer resins were synthesized through the condensation of 8‐hydroxyquinoline‐5‐sulfonic acid and thiourea with formaldehyde in the presence of hydrochloric acid as a catalyst and with various molar ratios of the reacting monomers. The resulting copolymers were characterized with UV‐visible, IR and 1H‐NMR spectral data, employed to determine the reactivity of monomers. The average molecular weights of these resins were determined with vapor pressure osmometry and conductometric titration in a nonaqueous medium. The chelation ion‐exchange properties were also studied with the batch equilibrium method. The resins were proved to be selective chelating ion‐exchange copolymers for certain metals. The chelation ion‐exchange properties of these copolymers were studied for Cu2+, Ni2+, Co2+, Pb2+, and Fe3+ ions. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymers showed a higher selectivity for Fe3+ ions than for Cu2+, Ni2+, Co2+, and Pb2+ ions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
A series of gel resins were prepared by polymerizing glycidyl methacrylate (GMA) and 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) and functionalizing with ammonia (NH3) and tetraethylenepentamine (TEPA). The aminated gel resins were then used as an adsorbent for the removal of heavy metal ions (Cu2+ and Pb2+). These gel resins containing amino groups and chelating amino groups had excellent adsorptive properties for Cu2+ and Pb2+. The adsorption process reached equilibrium in 40 min, and the adsorption capacities of Cu2+ and Pb2+ were 75.0 mg g?1 and 266.6 mg g?1 for the NH3‐aminated gel resins and 57.5 mg g?1 and 330.6 mg g?1 for the TEPA‐aminated gel resins, respectively. After five adsorption–desorption processes, the adsorption capacities only decreased slightly. Thus, these aminated gel resins can be used as effective adsorbents for aqueous heavy metal ions (Cu2+ and Pb2+). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44466.  相似文献   

11.
The chelating resins have high potential applications for the selective removal and recovery of metal ions from industrial waste solutions. The hydrophilic acrylate monomer with the iminodiacetic acid chelating group was prepared from glycidyl methacrylate and iminodiacetic acid at 60°C. The microbeads, prepared from acrylate monomer with the iminodiacetic acid chelating group, were employed by inversion suspension polymerization. In the pH range of 2–6, a reasonably good equilibrium sorption capacity is maintained for Cr3+ (ca. 2.7 mmol/g) and Cu2+ (ca. 1.8 mmol/g) in the chelating resins. The adsorption of Cd2+ and Pb2+ on microbeads is clearly affected by the pH of the solution, such that these ions' adsorption capacity increased with the pH of the aqueous solution. The adsorption of Cd2+ (ca. 1.25–1.87 mmol/g) and Pb2+ (ca. 0.99–1.89 mmol/g) showed a maximum at approximately pH = 5 and 6, respectively. The adsorption isotherms of Cr3+ and Cu2+ adsorbed on microbeads were following the Langmuir isotherm, but the adsorption behavior of Cd2+ and Pb2+ were not. The concentration of alkaline earth–metal cations on the range of 0–200 ppm had no influence on metal ions adsorbed capacity of chelating resins. Additionally, NTA (nitrilotriacetic acid) had no significant influence on metal ion adsorption by chelating resins. Furthermore, phenol pollutant can be adsorbed effectively by metal ions chelated microbeads; therefore, the microbeads were useful not only in recovering metal ions but also in the treating phenol pollutants in wastewater. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1353–1362, 2002; DOI 10.1002/app.10243  相似文献   

12.
Chelating resins have been considered to be suitable materials for the recovery of heavy metals in water treatments. A chelating resin based on modified poly(styrene‐alt‐maleic anhydride) with 2‐aminopyridine was synthesized. This modified resin was further reacted with 1,2‐diaminoethan or 1,3‐diaminopropane in the presence of ultrasonic irradiation for the preparation of a tridimensional chelating resin on the nanoscale for the recovery of heavy metals from aqueous solutions. The adsorption behavior of Fe2+, Cu2+, Zn2+, and Pb2+ ions were investigated by the synthesis of chelating resins at various pH's. The prepared resins showed a good tendency for removing the selected metal ions from aqueous solution, even at acidic pH. Also, the prepared resins were examined for the removal of metal ions from industrial wastewater and were shown to be very efficient at adsorption in the cases of Cu2+, Fe2+, and Pb2+. However; the adsorption of Zn2+ was lower than those of the others. The resin was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction analysis, and differential scanning calorimetry analysis. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
3-Carboxy-4-hydroxyacetophenone (CHAP) was polycondensed with various proportions of formaldehyde using alcoholic alkali as catalyst. The resin samples, designated as CHAP-F, have been characterized by elemental analyses and IR spectroscopy, by estimation of their number average molecular weights (M?n), by measurement of intrinsic viscosity, and by TGA. Polymeric metal chelates of one CHAP-F sample with Cu2+, Fe3+, Co2+, Ni2+, and UO22+ ions have been prepared and characterized. Ion-exchanging properties of one CHAP-F resin sample for Fe3+, Cu2+, and Ni2+ metal ions are studied by the application of the batch-equilibration method.  相似文献   

14.
The rates of H+Mg2+ exchange at low solution concentration on several styrene sulfonic acid resins with either a macroporous or gelular matrix have been measured by the shallow-bed technique. The kinetics of Mg2+ uptake on macroporous and gelular resins were compared. The location of the liquid-solid interphase in the resin bead, where the ion diffusion rate controls the overall exchange rate, was estimated.  相似文献   

15.
Macroreticular chelating resins containing aminomethylphosphonic acid groups were prepared by reaction of methyl methacrylate/divinylbenzene copolymer beads with triethylenetetramine, followed by the reaction of the products with phosphorous acid and formaline. The adsorption capacities of this resin for Cu2+, Pb2+, Zn2+, Ni2+, Co2+, Ca2+, and Mg2+ were determined at various pH values. The order of chelate stability for the resin was Cu2+ > Pb2+ > Zn2+ > Ni2+ > Co2+ > Ca2+ > Mg2+. Copper, nickel, zinc, calcium, and magnesium ions can be eluted with 1 mol dm?3 hydrochloric acid. The proposed resin appears to be useful for the removal of Ca2+ and Mg2+ from salt solution.  相似文献   

16.
In this study, the strong‐acid polystyrene resin D001 was modified by impregnation with metal ions Fe3+, Cu2+, and Zn2+ to prepare new kinds of sorbents. The modified D001 was characterized by N2 sorption–desorption isotherms, X‐ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The sorption performance of the metal modified resins for removal of antibiotics tetracycline (TC) and doxycycline (DC) from aquatic environment was investigated and excellent sorption capability with more than 98% removal ratio was observed for these resins after modification. Although these modified resins also presented pH‐dependent sorption, they showed much better flexibility with pH fluctuation than those of the unmodified original D001, and extremely strong sorption capability was exhibited in a wide range of pH 2–8 for both TC and DC. Pseudo‐second‐order kinetic equation described the sorption process more reasonably than pseudo‐first‐order equation. Langmuir isotherm model provided the best match to the equilibrium data with monolayer maximum sorption capacity of 417–625 mg g?1 under 288–318 K. The sorption capacity decreased with the increase of ionic strength of NaCl. The main sorption mechanism was proposed to be surface complexation, cation bridge interaction and electrostatic attraction/competition between antibiotics and metal modified resins. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41803.  相似文献   

17.
Several new chelating resins prepared from macroporous chloromethylated polystyrene‐co‐divinylbenzene by either direct attachment of the heterocyclic functional groups, such as 2‐aminopyridine, 2‐amino‐5‐methylthio‐1,3,4‐thiadizole, 2‐amino‐5‐ethyl‐1,3,4‐thiadizole, and 2‐mercaptobenzothiazole, to the polymeric matrix or through different hydrophilic spacer arms were tested for the adsorption properties toward Hg2+, Ag+, Cd2+, and Pb2+ in an ammonium acetate buffer solution of pH 3.0. The results show that these resins exhibited a high affinity for Hg2+ and Ag+. The introduction of hydrophilic spacer arms between the polymeric matrix and heterocyclic functional groups resulted in an increase in the hydrophilicity and adsorption capacity of the resins. The presence of spacer arms made the kinetics of adsorption faster. The influence of the length of the spacer arm on the adsorption properties was also investigated. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
A series of novel snake‐cage resins were synthesized using carboxymethyl chitosan (CM‐CTS) as the snake resin and urea–formaldehyde resin (UF) as the cage resin. Such factors as the optimal synthesis conditions, content of the crosslinking agent, and sorption capacities for metal ions of the above‐mentioned resins were investigated. The experimental results show that these resins have appropriate swelling properties and good mechanical stability. They do not run off in water, HCl, and NaOH aqueous solutions. To form a stable network system, NH4Cl was used as a crosslinking agent to crosslink urea and formaldehyde in synthesis. The sorption experiment showed that the sorption properties of the resins in the presence of the crosslinking agent NH4Cl are better than those without a crosslinking agent. The investigation of the FTIR spectra indicated that the chelate groups, such as —OH, —CO and NHCH2CO, in snake‐resin molecules participated in the coordination with the metal ions, but the —C?O bonds in the cage resin UF did not. The snake resin CM‐CTS in the snake‐cage resins was the major contributor of sorption. The sorption dynamics showed that the sorption was controlled by liquid film diffusion. The isotherms can be described by Freundlich and Langmuir equations. The saturated sorption capacities of the resins for Cu2+, Ni2+, Zn2+, and Pb2+ were 1.48, 0.78, 0.13, and 0.02 mmol g?1, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 310–317, 2002; DOI 10.1002/app.10331  相似文献   

19.
The synthesis, characterization, and metal ion uptake studies of two chelating resins with multiple functional groups are reported. The chelating resins were synthesized by condensing a phenolic Schiff base derived from 4,4′‐diaminodiphenylmethane and o‐hydroxyacetophenone with formaldehyde or furfuraldehyde. The resins readily absorbed transition metal ions, such as Cu2+ and Ni2+, from dilute aqueous solutions. The Schiff base, resins, and metal polychelates were characterized by various instrumental techniques, such as elemental‐analysis, ultraviolet–visible spectroscopy proton and carbon‐13 nuclear magnetic resonance spectroscopy (1H‐NMR and 13C‐NMR, respectively), X‐ray diffraction (XRD), and thermogravimetric–differential thermogravimetric analyses (TG–DTG). The 1H‐NMR and 13C‐NMR studies were used to determine the sites for aldehyde condensation with the phenolic moiety. Fourier transform infrared data provided evidence for metal–ligand bonding. Thermogravimetric analysis was employed to compare the relative thermal stabilities of the resins and the polychelates. The TG data were fitted into different models and subjected to computational analysis to calculate the kinetic parameters. The XRD data indicate that the incorporation of metal ion into the resin matrix significantly enhanced the degree of crystallinity of the material. The extent of metal‐ion loading into the resins was studied in competitive and noncompetitive conditions, varying the time of contact, metal ion concentrations, and pH of the reaction medium in a suitable buffer medium. The furfuraldehyde‐condensed resin was more effective in removing metal ions than the formaldehyde‐condensed resins. The resins were selective for Cu2+, resulting in separation of Cu2+ and Ni2+ from the mixture at pH 5.89. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 570–581, 2003  相似文献   

20.
Synthesis of two unconventional ion exchange resins and their behaviour on the mercury sorption experiments were investigated.The ion exchange resins were obtained by the quaternization reaction of 4-vinylpyridine:divinylbenzene copolymer, gel-type, by two ways namely, the nucleophilic substitution of the pyridine matrix with 2-chloroacetamide and the nucleophilic addition of protonated copolymer to acrylamide.Comparative sorptions of Hg2+ ions on the synthesized pyridine resins by batch experiments in mono- and binary system were analyzed. Mercury retention experiments aimed to study the influence of the solution concentration, contact time and solution pH. The removal of Hg2+ ions from aqueous solutions depends on the pH values, the amount of the retained mercury increased with the pH value.The studied strong base pyridine anion exchange resins presented a good selectivity for the Hg2+ ions during the competitive sorption of Hg2+/Cu2+, Hg2+/Zn2+ and Hg2+/Fe3+ at metal cations ratio of 1:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号