首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wheat plants (Triticum aestivum) were harvested at the bloom and soft-dough stages, separated into leaves + sheaths, stems and spikes, and the effect of stage of maturity on neutral detergent fibre (NDF) composition and degradability was studied, the accumulation of starch in the spikes compensated for the decrease in the degradability of NDF polysaccharides so that the in-vitro digestibility of the organic matter (OM) was not changed between the bloom and soft-dough stages. Minor compositional changes occurred in the NDF of the various botanical fractions which can hardly explain the drop in NDF degradability with maturity. There was a decline in the ratio of hemicellulose to lignin, and the changes in NDF-monosaccharide degradability were probably related to the extension of covalent bonding between those matrix components during maturation. Irrespective of botanical fraction and maturity stage, NDF xylose was less digestible than NDF glucose. Between bloom and soft-dough stages there was an increase of 36% in the yield of digestible OM.  相似文献   

2.
Recent studies have shown that the compound imazethapyr (5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)nicotinic acid) possesses growth regulatory activity and can be used to enhance nutritive value of grasses. However, little is known about possible effects of this material on fibre composition or potential fibre utilisation by ruminants. The objective of this research was to examine imazethapyr-treated cocksfoot (Dactylis glomerata L), ryegrass (Lolium perenne L × L multiflorum Lam), and timothy (Phleum pratense L) for possible treatment-induced changes in in-vitro digestibility and in concentrations of selected fibre constituents. Replicated field plots treated with imazethapyr at 0 (control) or 100 g ai ha?1 during the vegetative (pre-elongation) stage of growth were harvested when controls were in the early stage of inflorescence emergence. Samples taken from treated plots 4 weeks post-treatment had higher in-vitro dry matter disappearance (IVDMD), lower neutral detergent fibre (NDF), lower acid detergent fibre (ADF), lower cellulose, lignin, and higher hemicellulose concentrations compared with controls. Imazethapyr treatment also reduced the concentration of p-coumaric acid in NDF, but had no effect on ferulic acid. The treatment effect on in-vitro NDF disappearance, however, was inconsistent among the grass species and was statistically non-significant (P = 0·10), implying that, under the conditions of this study, imazethapyr-related enhancements in IVDMD can be attributed primarily to a reduction in the amount of NDF and its associated constituents, as opposed to qualitative differences in NDF composition.  相似文献   

3.
The effect of harvest time and storage on dietary fibre content and composition was investigated in six cultivars of white cabbage (Brassica oleracea var capitata). Three cultivars were of early maturity type (SW Nordpol, Rolly and Balbro) and three of late maturity type (Predikant, Hanna and Lion). The average total dietary fibre (TDF) content was 241 g kg?1 dry matter (DM) (CV = 13), of which approximately 25% was soluble (CV = 15). The main dietary fibre components were glucose (37%), uronic acid (32%), arabinose (12%) and galactose (8%) residues. Early cultivars generally had a lower TDF content than late maturity types, due to a lower amount of both insoluble (arabinose, galactose and glucose) and soluble (arabinose) polymers. An early cultivar, Rolly, had the highest solubility, 33%, versus 25 ± 4% for the other cultivars. The early cultivar SW Nordpol had a similar TDF content and proportion of soluble dietary fibre (SDF) to the late cultivar Hanna, but the dietary fibre composition was different, with the early cultivar having a lower proportion of arabinose residues. Storage for 6 weeks had minor effects on the dietary fibre. After further storage of the late maturity cultivars, there was an increase in insoluble dietary fibre (IDF) (glucose and uronic acid residues) and a decrease in SDF (arabinose and galactose residues). As a consequence the solubility of TDF decreased from 29 to 19% on average. Harvesting before physiological maturity was reached resulted in a somewhat lower content of TDF and IDF for two cultivars (Predikant and Hanna), while SDF was more or less unaffected for all cultivars. Long‐term storage had fewer effects on cabbage harvested prior to maturity than when harvested at the right physiological maturity. It is concluded that the observed differences between cultivars and after long term storage are of such magnitude that they may affect nutritional properties of the dietary fibre. © 2002 Society of Chemical Industry  相似文献   

4.
5.
Plants from two genotypes of swede (Brassica napus var napobrassica), kale (B oleracea var. acephala) and rape (B napus var napus) were each inoculated at the three to four true leaf stage with 10 eggs of the turnip root fly, Delia floralis. After 8 weeks the damage caused by the resultant larvae significantly reduced the weight of leaves, stems and roots compared with uninoculated plants, with the greatest reduction (26–46%) being found in the roots. Dry matter content, which did not differ between either crop type or cultivar, was unaffected by larval damage. Ethanol-soluble sugar content was reduced in all cases by larval damage, but only significantly in one rape and one swede cultivar. The effect of D floralis damage on the concentrations of individual sugars (glucose, fructose and sucrose) was crop type and cultivar dependent. The neutral detergent fibre and lignin contents of the undamaged swede roots were significantly lower than in either the undamaged kale or rape cultivars studied. In all crop types the neutral detergent fibre and lignin content significantly increased following D floralis damage. The six Brassica genotypes studied fell into two groups on the basis of host status for D floralis. The two kale cultivars and the forage rape Hobson were considered poor hosts for D floralis, with low percent age pupation (38–41%) and low pupae weight (12.5–14.4 mg). The two swedes and the oilseed rape Ariana were considered good host for D floralis, with both higher percentage pupation (51–59%) and pupae weights (19.8–20.0 mg). The possible relationships between the root composition of undamaged and attacked roots, and D floralis resistance are discussed.  相似文献   

6.
Normal and brown midrib mutant (bmr) maize (Zea mays L) were examined for variations in their morphological composition. The degradability of the leaf blade, leaf sheath and stem, proportional area of specific tissues in leaf blade, and the ultraviolet (UV) absorption spectra of cell walls were measured and related to variations in cell wall degradability by rumen microorganisms. The UV and infrared (IR) absorption spectra of the lignins isolated from leaf blades of both types, before and after reduction with sodium borohydride, were recorded. The bmr3 maize had higher dry matter (DM) and neutral detergent fibre (NDF) degradabilities for leaf blade, leaf sheath, and stem than the normal counterpart. Approximately 35% and 26% of the observed difference in DM degradability was attributed to the difference in DM degradability of stem and leaf blade, respectively, and 39% to the difference in DM composition of stem. Distinct differences in tissue degradation of the leaf blades were observed for mesophyll cell walls in the midrib portion, which were thinner and of greater number in the bmr3 maize. Sclerenchyma cells were present only in the vascular bundles in the bmr3 leaf blade, while in the normal type those cells were underneath the epidermis tissue. The bmr3 plant also had large epidermal cells. UV microspectrometry of mesophyll cell walls of the bmr3 maize showed their lower UV absorbance around 320 nm compared to that of the normal, but not at 280 nm. Considerable increase in the UV absorbance at 280 nm was observed for the isolated lignins after reduction, suggesting a lesser degree of lignification in the bmr3 maize tissues. Lowered UV absorbance of the isolated lignin around 320 nm after reduction was associated with the removal of the IR bands at 1730, 1660, 1600, and 1250 cm?1.  相似文献   

7.
Two methods—Klason lignin (KL) and acid detergent lignin (ADL)— for determining lignin concentration in plants were compared using stem material from lucerne (Medicago sativa L), cocksfoot (Dactylis glomerata L) and switchgrass (Panicum virgatum L), at three stages of maturity, and leaf samples from lucerne and cocksfoot. For all forages, KL values were higher than ADL values. Lucerne samples, which had crude protein levels twice that of the grass species, had KL values that were only 30–40% higher than ADL values; in grasses, KL values were 200–300% greater than ADL values. The addition of nitrogenous materials (bovine serum albumin, lysine, and ammonium sulfate) to commercial xylan and cellulose did not result in additional KL residue. Pyrolysis-GC-MS revealed that both residues appeared to be similar to the orginal plant lignin and did not appear to be contaminated with carbohydrate or protein. The higher values for grass KL residues were not due to protein con- tamination or incomplete hydrolysis of carbohydrates, but were more likely due to the solubilization of lignin components by the ADL treatment. KL values may give a more accurate quantification of the total lignin within forage plants.  相似文献   

8.
An Arabidopsis mutant that does not deposit syringyl‐type lignin was used to test the hypothesis that lignin composition impacts cell‐wall degradability. Two lines of the ferulate‐5‐hydroxylase‐deficient fah1 mutant and the wild‐type control line were grown in the greenhouse. In Experiment 1, the plants were harvested at the mature seed stage. For Experiment 2, plants were harvested 5, 6, 7 and 8 weeks after sowing. In both experiments stems were collected and analysed for cell‐wall concentration and composition, and in vitro degradability of cell‐wall polysaccharide components by rumen micro‐organisms. The absence of syringyl‐type lignin was confirmed for the mutant lines by nitrobenzene oxidation and pyrolysis‐GC‐MS. Lignin concentration was the same for all three Arabidopsis lines, at all stages of maturity. The Arabidopsis stems were similar to forage legumes in that the potentially degradable cell‐wall fraction was very quickly degraded. Cell‐wall polysaccharide degradability did not differ among the Arabidopsis lines in the first experiment after 24‐h fermentations, but the cell‐wall polysaccharides of the fah1‐2 mutant line were less degradable after 96‐h than either the wild‐type or the fah1‐5 mutant. In contrast, in Experiment 2 no differences among lines were found for cell‐wall polysaccharide degradability after either 24‐ or 96‐h fermentations; however, signficantly higher levels of ester‐bound ferulic acid were found in the walls of the fah1 mutant lines. As expected, increasing stem maturity was correlated with reduced degradation of cell‐wall polysaccharides. These experiments indicate that either lignin composition, as measured by syringyl‐to‐guaiacyl ratio, does not alter cell‐wall degradability in Arabidopsis, or that the fah1 mutation has other effects on the cell walls of these mutants such that the impact of the change in syringyl‐to‐guaiacyl ratio is masked. © 1999 Society of Chemical Industry  相似文献   

9.
Chemical and biological delignification methods were used to investigate the relationship between the concentration and composition of lignin and degradation of forage cell walls. Stem material from lucerne (Medicago sativa L), smooth bromegrass (Bromus inermis Leyss) and maize (Zea mays L) stalks was treated with alkaline hydrogen peroxide, potassium permanganate, sodium chlorite, sodium hydroxide, nitrobenzene, and the lignolytic fungus Phanerochaete chrysosporium. Klason lignin and esterified and etherified phenolic acids were delermined. Cell wall neutral sugar and uronic acid composition and the extent of in-vitro degradability were measured. Chemical delignification generally removed lignin. but the fungal treatment resulted in the removal of more polysaccharide than lignin. The concentrations of esterfied and etherified p-coumaric and ferulic acids were generally reduced in treated cell walls; chlorite treatment preferentially removing p-coumaric acid whereas nitrobenzene treatment removed more ferulic acid. Syringyl moieties were completely removed from the core lignin polymer by nitrobenzene treatment of forage stems. Alkaline hydrogen peroxide and nitrobenzene were generally the most effective delignification treatments for improving polysaccharide degradability, with the grass species responding similarly to delignification whereas lucerne was somewhat less responsive. Fungal delignification, under these experimental conditions, did not improve cell wall degradability of these forages. Multiple regression and covariate analyses indicated that the lignin components measured were not powerful predictors of cell wall degradability. Neither the concentration nor the composition of the lignin fractions was consistently correlated with degradation. This lack of effect was attributed to the more generalised disruption of the cell wall matrix structure by delignification treatments.  相似文献   

10.
A study was conducted to determine the chemical composition and in situ nutrient ruminal degradability of three lucerne products. These were dehydrated pellets, sun‐cured pellets and cubes. Results of the chemical analysis showed that sun‐cured pellets had the highest (P < 0.05) neutral and acid detergent fibre as well as total carbohydrate levels, followed by cubes and dehydrated pellets respectively. Crude protein (CP) content was highest (P < 0.05) for dehydrated pellets (204.3 g kg?1), intermediate for sun‐cured pellets (160.0 g kg?1) and lowest for cubes (153.2 g kg?1). Intermediately degradable CP (buffer‐insoluble CP minus neutral detergent‐insoluble CP) was the main protein fraction in the three products and was higher (P < 0.05) in cubes than in dehydrated and sun‐cured pellets. Estimated net energy of lactation was highest (P < 0.05) for dehydrated pellets (5.9 MJ kg?1), intermediate for cubes (5.23 MJ kg?1) and lowest (P < 0.05) for sun‐cured pellets (5.15 MJ kg?1). Results of the in situ experiment indicated that dehydrated pellets had higher (P < 0.05) ruminal protein degradability than sun‐cured pellets and cubes. The estimated ruminal escape protein values for dehydrated pellets, sun‐cured pellets and cubes were 361, 420 and 498 g kg?1 CP respectively. It was concluded that differences in chemical composition and ruminal degradability among the three lucerne products were mainly due to differences in stage of maturity. It was also concluded that the dehydration process failed to increase the ruminal escape protein value of dehydrated pellets relative to sun‐cured pellets and cubes. © 2001 Society of Chemical Industry  相似文献   

11.
The effect of down-regulation of tobacco cinnamyl alcohol dehydrogenase (CAD) on cell wall composition and degradability has been assessed. CAD activity was only 20, 16, 14 and 7%, relative to the controls, in four populations of plants (designated 40-1, 40-2, 48 and 50, respectively) transformed with CAD antisense mRNA. Cell wall residues of stem samples were analysed for polysaccharide composition, gravimetric and acetyl bromide lignins and lignin nitrobenzene oxidation products. In situ disappearance and cellulase solubility of both initial dry matter and CWR were determined. The populations of plants with depressed CAD activity showed no change in lignin content but some consistent changes in cell wall composition and digestibility were identified. The syringyl content of lignins decreased and the syringaldehyde to vanillin ratio (S/V) was consequently reduced. Dry matter degradability, as measured by both methods, was significantly improved in all CAD-depressed samples except for population 40-1, which was the least CAD-depressed. Increased in situ disappearance of cell wall (ISCWD) was found in all plants exhibiting more than 80% CAD down-regulation and was maximal (7 percentage units) in population 50 which had the greatest CAD depression. The rates of ISCWD increased slightly in some populations (40-2 and 50). The relationship between S/V and ISCWD was significant (R = -0·68) only in the samples from a selected population of mature, most depleted plants. Other modifications may therefore also contribute to the improvement in degradability. However the changes in lignin composition that were observed in CAD-depressed tobacco are largely similar to those seen in some maize and sorghum mutants with altered lignification and improved digestibility. These data therefore suggest that depressing CAD activity may be an effective method for improving digestibility in forage crops. © 1998 SCI.  相似文献   

12.
Relationships among soluble phenolics, soluble and insoluble proanthocyanidins (PAC), lignin, N, neutral-detergent fibre (NDF), and in-vitro degradability of protein and NDF were determined in 72 West African fodder trees and shrubs. Species were collected in the semi-arid (Niger), sub-humid (Nigeria) and humid/sub-humid (Benin) zones. Variation among species in chemical composition and in-vitro degradability of protein and NDF was large. Zones did not differ in mean content of phenolic compounds. Protein degradability was negatively correlated with soluble phenolics (r = ?0.34, P < 0.01) and soluble PAC (r = ?0.47, P < 0.001). NDF was positively correlated with soluble PAC (r = 0.44, P < 0.001), insoluble PAC (r = 0.28, P < 0.05) and lignin (r = 0.76, P < 0.001). NDF degradability was negatively correlated with soluble PAC (r = ?0.40, P < 0.001) and lignin (r = ?0.59, P < 0.001). Chemical composition and in-vitro degradability along with field observations can provide useful criteria for determining the nutritive value of browse species.  相似文献   

13.
The phenolic equipment of maize stem tissues was investigated in relation to the feeding value of the detergent fibre components. Sixteen maize inbred lines, including three brown‐midrib 3 mutants and their normal counterparts, were selected for highly divergent in vitro cell wall digestibility. These lines were grown during two years. Maize stems were analysed for detergent fibre concentration, esterified and etherified p‐hydroxycinnamic acids, lignin content and structure and in vitro digestibility. A large genotypic variation was found for neutral detergent fibre, cell wall phenolic composition and cell wall digestibility. Within the normal maize lines the in vitro neutral detergent fibre digestibility (IVNDFD) of stem fractions was negatively correlated with their Klason lignin content. A multiple regression model based on esterified p‐coumaric acid and lignin composition as two explanatory variates accounted for 58% of the IVNDFD variation. In this study, three normal maize inbred lines displaying a lignin content and a cell wall digestibility level close to those observed in the three bm3 lines could be detected, which opens up new breeding avenues. © 2000 Society of Chemical Industry  相似文献   

14.
This study evaluated the effects of feeding alfalfa and pods of tree legumes on rumen pH and ammonia concentration as well as in sacco degradability of dry matter and fibre constituents of maize stover, alfalfa hay and their neutral detergent extracts. The feeds were incubated in the rumens of five South African Merino sheep fed individually in an incomplete (5 × 4) Latin square design using five diets. The diets comprised equal proportions of pasture hay and either alfalfa (Alfalfa diet) or pods of Acacia sieberiana (Sieberiana diet), Acacia nilotica (Nilotica diet) or Leucaena leucocephala (Leucaena diet). The fifth diet was composed of pasture hay alone (Hay diet) and served as a negative control. Supplementation of hay with either legume pods or alfalfa significantly (p < 0.05) increased rumen ammonia concentration from 56 to a maximum of 86 mg l?1. The pH of the rumen fluid ranged between 6.2 and 6.5 for all diets, but variations in pH were not significant. Diet did not affect (p > 0.05) the degradability constants lag time (LT), slowly degradable fraction (B), potential degradability (PD), effective degradability (ED) and rate of degradation (C) of dry matter (DM) but significantly (p < 0.01) affected ED of the fibre constituents of the incubated feeds. The effective degradabilities of the incubated feeds differed (p < 0.001), with alfalfa and maize stover having average values of 555 and 318 g kg?1 DM respectively. The rate of degradation of alfalfa was also higher (p < 0.01) than that of maize stover. Neutral detergent extraction improved ED of the cell wall constituents of maize stover but produced the opposite effect for alfalfa. The interactions between incubation feed and extract were significant (p < 0.01) for ED and C of neutral detergent fibre and hemicellulose. The observations show that pods from tree legumes are comparable to alfalfa in the provision of rumen ammonia but limit microbial activity in the degradability of fibre constituents. They also show that maize stover and alfalfa differ in their degradabilities and that the differences may be attributed to their cell wall chemistry. © 2001 Society of Chemical Industry  相似文献   

15.
Effect of Callosobruchus chinensis (L.) infestation was seen on the carbohydrate and dietary fibre content of chickpea, green gram and pigeon pea at 10, 20, 30, 40, 50 and 60 per cent levels of infestation. With increase in level of infestation energy, starch, total sugars and non-reducing sugars decreased, whereas significant increase in the reducing sugars, crude fibre, neutral detergent fibre, acid detergent fibre, hemicellulose, cellulose and lignin was observed.  相似文献   

16.
BACKGROUND: Dry matter degradability (DMD) parameters (a, b and c in the Ørskov and McDonald model) are usually determined by the nylon bag technique. The aim of this study was to estimate DMD parameters of ruminant mixed diets, which are in general unavailable, through multiple linear regressions on their chemical composition (ash, crude protein, neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL)). The regressions were based on data from 77 feeds. RESULTS: The prediction model for a was reduced to a simple linear regression on NDF (adjusted R2 = 0.727, F test P < 0.001). A regression model for b was obtained with ADL as the sole predictor (adjusted R2 = 0.691, P < 0.001). The model's upper asymptote (a + b) was predicted from ADL, NDF and ash (adjusted R2 = 0.908, P < 0.001). Modelling c proved more difficult (adjusted R2 with all five predictors = 0.481, P < 0.001). CONCLUSION: Regressing model parameters on feed chemical composition is a promising method for estimating the degradability of mixed diets, providing an alternative to invasive and expensive laboratory techniques. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
The chemical composition of fibre from lucerne (Medicago sativa L) hay and rumen digesta from a cow fed the hay, as well as the variation in fibre composition due to particle size and time post-feeding for the digesta, was examined. Neutral sugar residues accounted for the greatest proportion of the fibre in all samples. The feed contained equal amounts of uronic acid residues and Klason liynin, while in the digesta uronic acid residue contents were decreased and Klason lignin levels were increased. Esterified phenolics accounted for less than 0.5 % of the fibre in all samples. Glucose was the primary sugar residue in the fibre, but xylose levels increased substantially in the digesta. The levels of other sugar residues declined in the digesta relative to the feed. p-Coumaric and ferulic acids were the major esterified phenolics, and ferulic acid levels declined relative to the total phenolic acids in the digesta. The degree of variation in composition among particle size fractions or in digesta samples with time afer feeding were small relative to those observed between the feed and digesta. Invitro degradability reflected differences in fibre composition, with a large difference between lucerne hay and rumen digesta, but only minor differences among digesta samples collected from different times after feeding.  相似文献   

18.
Lucerne (alfalfa) was harvested at different stages of maturity and the plants classified according to a phenological scale. The main class was separated into anatomical parts and analysed for content of extractives and crude protein and in-vitro degradability. Whole crop samples were also analysed for polysaccharide residues, Klason lignin and in-vitro degradability of crude protein and polysaccharide residues. The composition of the plant changed during maturation with an increase of the stem fraction from 18.5% to 50.7% of dry matter and a corresponding decrease in the leaf fraction from 72.9% to 18.4% of dry matter. The leaf fraction changed least in content of extractives and crude protein and in-vitro degradability while in the stems all these paramaters decreased radically. Chemical analysis of residues after incubation with rumen liquor in vitro of whole crop samples revealed that the degradability of crude protein declined from about 90% to about 80% and of non-starch polysaccharides from about 90% to about 60% during maturation. Xylose was the least degradable polysaccharide residue at all harvests. Xylose residues also showed the greatest decrease in degradability during growth. A comparison showed that stage of development and harvest date were of practically equal value as predictor of crude protein content in lucerne.  相似文献   

19.
Samples of twenty-five different cultivars of potatoes were prepared and examined after cooking by boiling and by pressure cooking, peeled and 'in the jacket' in a factorial design to study the effect of cooking on dietary fibre fractions of potatoes. Raw samples were prepared as control.
The samples were analysed for acid detergent fibre (ADF) and lignin by published procedures. Filtration problems were encountered with the published procedure for neutral detergent fibre (NDF) giving rise to lack of reproducibility. Reproducibility was restored by introducing a short incubation of the sample with α-amylase enzyme ( Bacillus subtilis ) prior to the normal detergent digestion.
The lignin content of all samples was < 0.25% on a dry matter basis. Both ADF and NDF increased on cooking but boiled samples did not differ from pressure cooked samples. Cooking 'in the jacket' gave higher ADF values than peeled samples but the effect was not observed for NDF values.
Cultivar differences were significant for both ADF and NDF values but as the samples were all from a single season's crop in a single field a definitive ranking is not possible.  相似文献   

20.
Forty-five inbred maize (Zea mays L) lines were evaluated for genetic variation in stem cell-wall concentration, composition and degradability, and for relationships among cell-wall components and polysaccharide degradability. Cell-wall neutral sugars, uronic acids, Klason lignin, and ester- and ether-linked phenolic acids were measured on lower stem internode samples collected at the time of silking in 2 years. Twenty-four and 96 h in-vitro ruminal fermentations were used to determine the rapidly and potentially degradable cell-wall polysaccharide fractions, respectively. Genetic variation (P < 0.05) was found for all measures of cell-wall composition and many estimates of rapidly and potentially degradable cell-wall polysaccharide components. Inbred line means varied by 50–300% for most traits. Three brown midrib mutant inbred lines included in the study were not the lowest in lignin content nor did they exhibit the greatest cell-wall degradabilities in this population of inbred maize. Year of growth (environment) influenced (P < 0.05) cell-wall traits even though reproductive physiological maturity at sampling was similar in both years. Degradability of the cell-wall polysaccharide components were intercorrelated (P < 0.05) within the rapidly and potentially degradable fractions, but rate and extent of degradation of the cell-wall components were not correlated (P > 0.05), except for uronic acids. A multiple regression model of principal components (R2 = 0.41, P < 0.05) indicated that cell-wall lignification and substitution of wall polymers with phenolic and uronic acids were negatively associated, and pectic substances were positively related with rapid polysaccharide degradation. Very little of the variation (R2 = 0.15, P < 0.05) in potential cell-wall polysaccharide degradation could be explained by this multiple regression analysis. There is a large degree of genetic variation among current inbred maize lines for stem cell-wall quality traits, which should allow improvement of maize as a forage crop. Because of the complex matrix interactions in cell-wall organization, however, no single cell-wall component, or simple combination, can accurately predict degradability of maize cell walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号