首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
A sixteen node shell element is developed using a matrix stabilization scheme based on the Hellinger-Reissner principle with independent strain. Initially the assumed independent strain is divided into a lower order part and a higher order part. The stiffness matrix corresponding to the lower order assumed strain is equivalent to the stiffness matrix of the assumed displacement model element with the reduced integration scheme. The spurious kinematic modes of the element are suppressed by introducing a stabilization matrix associated with a judiciously chosen set of higher order assumed strain fields. Numerical results show that this element is free of locking even for very thin plates and shells.  相似文献   

2.
A nine node shell element is developed by a new and more efficient mixed formulation. The new shell element formulation is based on the Hellinger–Reissner principle with independent strain and the concept of a degenerate solid shell. The new formulation is made more efficient in terms of computing time than the conventional mixed formulation by dividing the assumed strain fields into a lower order part and a higher order part. Numerical results demonstrate that the present nine node element is free of locking even for very thin plates and shells and is also kinematically stable. In fact the stiffness matrix associated with the higher order assumed strain plays the role of a stabilization matrix.  相似文献   

3.
A nine node finite element model has been developed for analysis of geometrically non-linear laminated composite shells. The formulation is based on the degenerate solid shell concept and utilizes a set of assumed strain fields as well as assumed displacement Two different local orthogonal co-ordinate systems were used to maintain invariance of the element stiffness matrix. The formulation assumes strain and the determinant of the Jacobian matrix to be linear in the thickness direction. This allows analytical integration in the thickness direction regardless of ply layups. The formulation also allows the reference plane to be different from the shell midsurface. The results of numerical tests demonstrate the validity and the effectiveness of the present approach.  相似文献   

4.
An eighteen-node, three-dimensional, solid element with 54 degrees of freedom is presented for the finite element analysis of thin plates and shells. The element is based on the Hellinger-Reissner principle with independent strain. The assumed independent strain is divided into higher and lower terms. The stiffness matrix associated with the higher order independent strain plays the role of stabilization matrix. A modified stress-strain relation decoupling inplane and normal strain is used to incorporate thin shell behaviour. Numerical results demonstrate that, with a properly chosen set of assumed strain, this element is effectively free of locking even for very thin plates and shells.  相似文献   

5.
A new mixed finite element formulation is developed based on the Hellinger-Reissner principle with independent strain. By dividing the assumed strain into its lower order and higher order parts, the new formulation can be made much more efficient than the conventional mixed formulation. In addition the present new approach provides an alternative way of introducing a stabilization matrix to suppress undesirable kinematic modes.  相似文献   

6.
通过定义广义应力,提出了一个改进的刚度矩阵,以克服固体壳元的厚度自锁问题,并能保证沿复合材料层合结构厚度方向上的连续应力分布;将应力插值函数分为低阶和高阶两部分,建议了一个新的非线性变分泛函,推导了一个用于几何非线性分析的九节点固体壳单元,该单元的计算精度和效率基本上与九节点减缩积分单元相当,与同类型其他单元相比,该单元显著提高了计算效率。  相似文献   

7.
A new quadrilateral Reissner–Mindlin plate element with 12 element degrees of freedom is presented. For linear isotropic elasticity a Hellinger–Reissner functional with independent displacements, rotations and stress resultants is used. Within the mixed formulation the stress resultants are interpolated using five parameters for the bending moments and four parameters for the shear forces. The hybrid element stiffness matrix resulting from the stationary condition can be integrated analytically. This leads to a part obtained by one‐point integration and a stabilization matrix. The element possesses a correct rank, does not show shear locking and is applicable for the evaluation of displacements and stress resultants within the whole range of thin and thick plates. The bending patch test is fulfilled and the computed numerical examples show that the convergence behaviour is better than comparable quadrilateral assumed strain elements. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
A set of four-node shell element models based on the assumed strain formulation is considered here. The formulation allows for changes in the shell thickness. As a result, the kinematics of deformation are described by purely vectorial variables, without using rotational angles. The present study investigates the use of bubble function displacements and the assumed strain field. Careful selection of the assumed strain terms generates an element whose order of numerical integration does not increase even when the bubble function displacements are added. Results for the four-node element without any bubble function terms show sensitivity to element distortion. Use of the bubble functions with a carefully chosen assumed strain field greatly improves element performance. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
10.
In this paper, a novel reduced integration eight‐node solid‐shell finite element formulation with hourglass stabilization is proposed. The enhanced assumed strain method is adopted to eliminate the well‐known volumetric and Poisson thickness locking phenomena with only one internal variable required. In order to alleviate the transverse shear and trapezoidal locking and correct rank deficiency simultaneously, the assumed natural strain method is implemented in conjunction with the Taylor expansion of the inverse Jacobian matrix. The projection of the hourglass strain‐displacement matrix and reconstruction of its transverse shear components are further employed to avoid excessive hourglass stiffness. The proposed solid‐shell element formulation successfully passes both the membrane and bending patch tests. Several typical examples are presented to demonstrate the excellent performance and extensive applicability of the proposed element. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The contribution of this paper consists of new development of transverse shear stresses through the thickness and finding an expression for the critical time step for explicit time integration of layered shells. This work presents the finite element (FE) formulation and implementation of a higher‐order shear deformable shell element for dynamic explicit analysis of composite and sandwich shells. The formulation is developed using a displacement‐based third‐order shear deformation shell theory. Using the differential equilibrium equations and the interlayer requirements, special treatment is developed for the transverse shear, resulting in a continuous, piecewise quartic distribution of the transverse shear stresses through the shell thickness. Expressions are developed for the critical time step of the explicit time integration for orthotropic homogeneous and layered shells based on the developed third‐order formulation. To assess the performance of the present shell element, it is implemented in the general non‐linear explicit dynamic FE code DYNA3D. Several problems are solved and results are presented and compared to other theoretical and numerical results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A new curved quadrilateral composite shell element using vectorial rotational variables is presented. An advanced co‐rotational framework defined by the two vectors generated by the four corner nodes is employed to extract pure element deformation from large displacement/rotation problems, and thus an element‐independent formulation is obtained. The present line of formulation differs from other co‐rotational formulations in that (i) all nodal variables are additive in an incremental solution procedure, (ii) the resulting element tangent stiffness is symmetric, and (iii) is updated using the total values of the nodal variables, making solving dynamic problems highly efficient. To overcome locking problems, uniformly reduced integration is used to compute the internal force vector and the element tangent stiffness matrix. A stabilized assumed strain procedure is employed to avoid spurious zero‐energy modes. Several examples involving composite plates and shells with large displacements and large rotations are presented to testify to the reliability, computational efficiency, and accuracy of the present formulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This investigation concerns itself with the dynamic analysis of thin, laminated composite plates consisting of layers of orthotropic laminae that undergo large arbitrary rigid body displacements and small elastic deformations. A non-linear finite element formulation is developed which utilizes the assumption that the bonds between the laminae are infinitesimally thin and shear non-deformable. Using the expressions for the kinetic and strain energies, the lamina mass and stiffness matrices are identified. The non-linear mass matrix of the lamina is expressed in terms of a set of invariants that depend on the assumed displacement field. By summing the kinetic and strain energies of the laminae of an element, the element mass and stiffness matrix can be defined in terms of the set of element invariants. It is shown that the element invariants can be expressed explicitly in terms of the invariants of its laminae. By assembling the finite elements of the deformable body, the body invariants can be identified and expressed explicitly in terms of the invariants of the laminae of its elements. In the dynamic formulation presented in this paper, the shape functions of the laminae are assumed to have rigid body modes that need to describe only large rigid body translations. The computer implementation and the use of the formulation developed in this investigation in multibody dynamics are discussed in the second part of this paper.  相似文献   

14.
This contribution deals with the application of a new solid-shell finite element based on reduced integration with hourglass stabilization in the field of sheet metal forming. The formulation includes the enhanced assumed strain (EAS) concept getting by with a minimum of enhanced degrees-of-freedom to overcome the volumetric locking and Pois- son’s thickness locking. To circumvent further the well-known effects of curvature thickness locking and transverse shear locking present in standard eight-node hexahedral finite elements the assumed natural strain (ANS) concept is applied. The implementation of the latter key feature is not straight-forward in reduced integration solid-shells. The second crucial point is a combined Taylor expansion of the compatible Green-Lagrange strain tensor with respect to the center of the element and the normal through the element center leading to an efficient and locking-free hourglass stabilization. Due to the three-dimensional modeling of the structure fully three-dimensional materials can be implemented without additional assumptions. Furthermore simulations of double-side contact problems (e.g. sheet metal forming) benefit from an exact modeling of the sheet thickness.  相似文献   

15.
王振  孙秦 《工程力学》2014,31(5):27-33
基于共旋列式方法发展了一种用于复合材料层合板结构几何非线性分析的简单高效的三结点三角形平板壳元。该壳元由具有面内转动自由度的广义协调膜元GT9与假设剪切应变场和假设单元转角场的广义协调厚薄通用板元TMT组合而成。为避免薄膜闭锁而采用单点积分计算与薄膜应变有关的项, 同时增加一个稳定化矩阵以消除单点积分导致的零能模式。基于层合板一阶剪切变形理论, 给出了考虑层合板具体铺层顺序的修正的横向剪切刚度, 使该壳元可用于中厚层合板结构的分析。由于共旋列式大转动小应变的假设, 共旋列式内核的几何线性的单元刚阵可仅计算一次而保存下来用于整个几何非线性求解的过程以提高计算效率。数值算例表明提出的壳元进行包括复合材料层合板结构的厚薄壳结构的几何非线性分析的精度高且效率高。  相似文献   

16.
This paper presents a versatile low order locking‐free mixed solid‐shell element that can be readily employed for a wide range of linear elastic structural analyses, that is, from thick isotropic structures to multilayer anisotropic composites. This solid‐shell element has eight nodes with only displacement degrees of freedom and few assumed stress parameters that provide very accurate interlaminar stress calculations through the element thickness. These elements can be stacked on top of each other to model multilayer structures, fulfilling the interlaminar stress continuity at the interlayer surfaces and zero traction conditions on the top and bottom surfaces of the laminate. The element formulation is based on the well‐known Fraeijs de Veubeke–Hu–Washizu mixed variational principle with enhanced assumed strains formulation and assumed natural strains formulation to alleviate the different types of locking phenomena in solid‐shell elements. The distinct feature of the present formulation is its ability to accurately calculate the interlaminar stress field in multilayer structures, which is achieved by the introduction of a constraint equation on the interlaminar stresses in the Fraeijs de Veubeke–Hu–Washizu principle‐based enhanced assumed strains formulation. The intelligent computer coding of the present formulation makes the present element appropriate for a wide range of structural analyses. To assess the present formulation's accuracy, a variety of popular numerical benchmark examples related to element convergence, mesh distortion, and shell and laminated composite analyses are investigated and the results are compared with those available in the literature. These benchmark examples reveal that the proposed formulation provides very good results for the structural analysis of shells and multilayer composites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The natural frequencies of isotropic and composite laminates are presented. The forced vibration analysis of laminated composite plates and shells subjected to arbitrary loading is investigated. In order to overcome membrane and shear locking phenomena, the assumed natural strain method is used. To develop a laminated shell element for free and forced vibration analysis, the equivalent constitutive equation that makes the computation of composite structures efficient was applied. The Mindlin-Reissner theory which allows the shear deformation and rotary inertia effect to be considered is adopted for development of nine-node assumed strain shell element. The present shell element offers significant advantages since it consistently uses the natural co-ordinate system. Results of the present theory show good agreement with the 3-D elasticity and analytical solutions. In addition the effect of damping is investigated on the forced vibration analysis of laminated composite plates and shells.  相似文献   

18.
19.
Accuracy and efficiency are the main features expected in finite element method. In the field of low‐order formulations, the treatment of locking phenomena is crucial to prevent poor results. For three‐dimensional analysis, the development of efficient and accurate eight‐node solid‐shell finite elements has been the principal goal of a number of recent published works. When modelling thin‐ and thick‐walled applications, the well‐known transverse shear and volumetric locking phenomena should be conveniently circumvented. In this work, the enhanced assumed strain method and a reduced in‐plane integration scheme are combined to produce a new eight‐node solid‐shell element, accommodating the use of any number of integration points along thickness direction. Furthermore, a physical stabilization procedure is employed in order to correct the element's rank deficiency. Several factors contribute to the high computational efficiency of the formulation, namely: (i) the use of only one internal variable per element for the enhanced part of the strain field; (ii) the reduced integration scheme; (iii) the prevention of using multiple elements' layers along thickness, which can be simply replaced by any number of integration points within a single element layer. Implementation guidelines and numerical results confirm the robustness and efficiency of the proposed approach when compared to conventional elements well‐established in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
A simple triangular solid shell element formulation is developed for efficient analysis of plates and shells undergoing finite rotations. The kinematics of the present solid shell element formulation is purely vectorial with only three translational degrees of freedom per node. Accordingly, the kinematics of deformation is free of the limitation of small angle increments, and thus the formulation allows large load increments in the analysis of finite rotation. An assumed strain field is carefully selected to alleviate the locking effect without triggering undesirable spurious kinematic modes. In addition, the curved surface of shell structures is modeled with flat facet elements to obviate the membrane locking effect. Various numerical examples demonstrate the efficiency and accuracy of the present element formulation for the analysis of plates and shells undergoing finite rotation. The present formulation is attractive in that only three points are needed for numerical integration over an element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号