首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nondestructive Testing and Prediction of Remaining Fatigue Life of Metals   总被引:1,自引:0,他引:1  
A nondestructive testing method is presented for the prediction of the remaining fatigue life (RFL) of metals with prior fatigue damage subjected to tension-compression fatigue load. It is shown that the slope of temperature rise obtained from a short-time excitation fatigue test is a good candidate to assess the present state of fatigue damage in the material. Three series of uniaxial tension-compression normal fatigue tests are carried out with two different materials under different loading conditions to characterize their fatigue behavior. Eight validation tests are performed under different loading conditions to evaluate the RFL prediction capability of the proposed method. Results show that the proposed method has good potential for predicting RFL of metallic specimens.  相似文献   

2.
Accuracy by Using newer Criterions of Strength for the Fatigue Behaviour of Metals under Multiaxial Alternating Load The prediction quality and applicability range of five newer developed approaches for determining the fatigue endurance limit of metallic materials under multiaxial loading conditions are tested by an extensive catalogue of present available experimental results. The discussion is limited to various biaxial states of combined normal and torsional alternating stress with synchronous or out-of-phase amplitudes and superimposed mean stresses. The statistical analysis of the deviations between experimental data (results from fatigue tests with probability of survival of Ps = 50%) and calculated values demonstrates significant differences with respect to the accuracy and validity; therefore and in consideration further aspects, a distinct quality rank of the examined computation methods is clearly indicated. As results of the recent examination can be stated, that in relation to the other failure criterions the “Quadratische Versagenshypothese” (QVH) is preferably recommended for a reliable application.  相似文献   

3.
Development of a new device to perform torsional ultrasonic fatigue testing   总被引:1,自引:0,他引:1  
The interest in gaining experimental knowledge on fatigue strength of materials over 109 cycles is rapidly increasing as evidenced for the large amount of investigations on this subject presented at the last very high cycle fatigue meeting (VHCF-3), held on September 2004. Most of the fatigue results presented at this conference were obtained under tension-compression, rotating bending, flexion and bending cyclic loading (some attaining 1010 cycles), using ultrasonic devices whose design was based on the natural frequency principles. In general, very little literature concerning the metallic alloys behavior under torsion cyclic loading using ultrasonic is available; however, in order to perform an accurate component design under multi-axial loading and VHCF, the material behavior under torsion cyclic loading is required. This investigation presents the development of a new mechanical device for testing and characterizing metallic alloys in the range of 109–1010 cycles in torsional cyclic loading and the first experimental results for medium carbon steel (38MnSV5S). The new device was designed to excite the components under testing with pure torsional vibration mode at a frequency of 20 kHz.  相似文献   

4.
The relations between fatigue strength and other mechanical properties especially the tensile strength of metallic materials are reviewed. After analyzing the numerous fatigue data available, the qualitative or quantitative relations between fatigue strength and hardness, strength (tensile strength and yield strength) and toughness (static toughness and impact toughness) are established. Among these relations, the general relation between fatigue strength σw and tensile strength σb, σw = σb(C ? P ? σb), where C and P are parameters, (hereafter, the general fatigue formula) can well predict the fatigue strength with increasing the tensile strength in a wide range for many materials such as conventional metallic materials, newly developed materials and engineering components. On the basis of the experimental results of many materials, the fatigue damage mechanism, especially for high‐strength steels, is proposed. It is suggested that the general fatigue formula can provide a new clue to predict the fatigue strength and design the materials by adjusting material parameters P and C adequately.  相似文献   

5.
Samples of Zr62.5Cu22.5Fe5Al10 bulk metallic glass are subjected to uniaxial compression. Comparison of tests in monotonic loading and cyclic loading (repeated loading to the onset of plasticity, then unloading) shows that the compressive plasticity of the glass is drastically reduced under cyclic loading. It is argued that this effect arises from stress reversal accelerating the concentration of shear on a dominant shear band. The link with compression–compression fatigue results, and the consequences for low-cycle fatigue of metallic glasses are considered.  相似文献   

6.
To accurately perform the fatigue assessment of engineering components subjected to in‐service multiaxial fatigue loading, the adopted design criterion must properly be calibrated, the used information usually being the fatigue strength under both pure uniaxial and pure torsional fatigue loading. Because of the complex fatigue response of metallic materials to multiaxial loading paths, the only reliable way to generate the necessary pieces of calibration information is by running appropriate experiments. Unfortunately, because of a lack of both time and resources, very often, structural engineers are requested to perform the multiaxial fatigue assessment by guessing the necessary fatigue properties. In this complex scenario, initially, the available empirical rules suitable for estimating fatigue strength under both pure axial and pure torsional fatigue loading are reviewed in detail. Subsequently, several experimental results taken from the literature and generated by testing metallic materials under a variety of proportional and non‐proportional multiaxial loading paths are used to investigate the way such empirical rules affect the accuracy in estimating fatigue strength, the damage extent being evaluated according to the modified Wöhler curve method. Such a systematic validation exercise allowed us to prove that under proportional loading (with both zero and non‐zero mean stresses), an adequate margin of safety can be reached even when the necessary calibration information is directly estimated from the material ultimate tensile strength. On the contrary, in the presence of non‐proportional loading, the use of the empirical rules reviewed in the present paper can result, under particular circumstances, in a non‐conservative fatigue design.  相似文献   

7.
This paper deals with the formulation and experimental validation of a novel fatigue lifetime estimation technique suitable for assessing the extent of damage in notched metallic materials subjected to in‐service proportional/nonproportional constant/variable amplitude multiaxial load histories. The methodology being formulated makes use of the Modified Manson‐Coffin Curve Method, the Shear Strain–Maximum Variance Method, and the elasto‐plastic Theory of Critical Distances, with the latter theory being applied in the form of the Point Method. The accuracy and reliability of our novel fatigue lifetime estimation technique were checked against a large number of experimental results we generated by testing, under proportional/nonproportional constant/variable amplitude axial‐torsional loading, V‐notched cylindrical specimens made of unalloyed medium‐carbon steel En8 (080M40). Specific experimental trials were run to investigate also the effect of non‐zero mean stresses as well as of different frequencies between the axial and torsional stress/strain components. This systematic validation exercise allowed us to demonstrate that our novel multiaxial fatigue assessment methodology is remarkably accurate, with the estimates falling within an error factor of 2. By modelling the cyclic elasto‐plastic behaviour of metals explicitly, the design methodology being formulated and validated in the present paper offers a complete solution to the problem of estimating multiaxial fatigue lifetime of notched metallic materials, with this holding true independently of sharpness of the stress/strain raiser and complexity of the load history.  相似文献   

8.
《Composites》1987,18(3):243-251
The sensitivity of carbon fibre composite aircraft materials to low-level impact damage leads to some concern about possible long-term degradation of these materials by fatigue, particularly under compression-dominated loading. The testing of carbon fibre composites under realistic flight-by-flight loading is complicated by the fact that composites display good fatigue properties combined with a higher level of scatter than is the case for metals; the duration of fatigue tests can therefore be considerable. This paper investigates the effects of using a modified loading spectrum for accelerated fatigue testing, and examines the growth rates of realistic impact damage in tests which represent flight-by-flight loading of an aircraft wing.  相似文献   

9.
The mean load of a cyclic loading has a large effect on fatigue crack growth rates in metallic materials and bonded joints. In metallic structures, this effect has been attributed to plasticity-induced crack closure, but little is known about the mechanism responsible for this mean load effect on fatigue crack growth in adhesively bonded joints. This paper presents a computational investigation of the plasticity-induced crack closure mechanism affecting disbond growth in adhesively bonded joints under fatigue loading. The results show that the ratios of crack-opening and crack-closure are approximately independent of the level of plastic constraint, indicated by the ratio between the plastic zone size and the adhesive thickness. An effective strain-energy release rate parameter, which accounts for the crack closure behaviour, has been developed as a new correlating parameter for disbond growth. Comparisons with the experimental results pertinent to four different adhesive bonded joints reveal that this new correlating parameter is capable of unifying the fatigue growth rates by eliminating the effect of mean loads.  相似文献   

10.
刘培生  马晓明 《材料工程》2012,(5):47-53,58
通过基于高孔率开口泡沫金属材料结构特点的简化结构模型和受力状态分析,建立了此类材料在循环载荷作用下的负载结构-疲劳模型,分析得出了对应疲劳性能的衡量指标。在上述模型的基础上,运用由该模型得出的高孔率开口泡沫金属疲劳性能的衡量指标,以电沉积法所得泡沫镍为例,对此类材料的疲劳性能进行了相关的实验研究。通过压-压循环和弯曲循环两种载荷作用的实验,验证了理论分析所得疲劳性能衡量指标的可行性。结果表明:泡沫镍在压-压循环载荷作用下的类应力疲劳性能随孔率增大而降低,而在弯曲循环载荷作用下的类应变疲劳性能则随孔率增大和孔径减小而提高。  相似文献   

11.
In this paper, several multiaxial fatigue damage parameters taking into account nonproportional additional hardening are reviewed. According to the way nonproportional additional hardening is considered in the model, the damage parameters are classified into 2 categories: (1) equivalent damage parameters and (2) direct damage parameters. The equivalent damage parameters usually define a nonproportional coefficient to consider nonproportional additional cyclic hardening, and make a combination of this nonproportional coefficient with stress and/or strain quantities to calculate the equivalent damage parameters. In contrast, the direct damage parameters are directly estimated from the stress and strain quantities of interest. The accuracy of 4 multiaxial fatigue damage parameters in predicting fatigue lifetime is checked against about 150 groups of experimental data for 10 different metallic materials under multiaxial fatigue loading. The results revealed that both Itoh's model, one of equivalent damage parameters, and Susmel's model, which belong to direct damage parameters, could provide a better correlation with the experimental results than others assessed in this paper. So direct damage parameters are not better than the equivalent damage parameters in predicting fatigue lifetime.  相似文献   

12.
In plasticity theories–applied in practical calculations- are usually based on the assumption of materials isotropy. Commercially obtained structural metallic materials however are originally anisotropic due to various kinds of thermal and mechanical treatments. Aluminium, titanium and magnesium alloys are typical anisotropic structural materials. The wide application of these materials in different fields of engineering demands more accurate mechanical behaviour predictions for these alloys under various conditions of loadings. In the aper, a simple theory of plasticity for anisotropic metals is proposed which is based on the results of experimental investigations into elasto-plastic deformation of initially anisotropic aluminium alloys subjected to simple (proportional) loading as well as under loading along stress path with a corner.  相似文献   

13.
A computerized procedure is presented and evaluated for application examples of long-life fatigue analyses of metallic materials under complex multiaxial loading. The method is based on the stress invariants and uses the minimum circumscribed ellipse approach for evaluating the effective shear stress amplitude under complex multiaxial loading. The applicability of the procedure for handling non-proportional loading is examined through typical examples such as combined normal/shear stresses and combined bi-axial normal stresses with complex stress time histories. The effects of phase shift angles, frequency ratios and waveforms on fatigue endurance were re-analysed and compared with available experimental results from the literature. The comparison shows that the presented procedure based on stress invariants is a potential conservative engineering approach, very suitable for fast fatigue evaluation in the integrated computer aided fatigue design.  相似文献   

14.
《Composites Part B》2001,32(7):575-588
Today, a lot of research is dedicated to the fatigue behaviour of fibre-reinforced composite materials due to their increasing use in all sorts of applications. These materials have a quite good rating as regards to lifetime in fatigue, but the same does not apply to the number of cycles to initial damage, or to the evolution of damage. Composite materials are inhomogeneous and anisotropic, and their behaviour is more complicated than that of homogeneous and isotropic materials such as metals. A new finite element approach is proposed in order to deal with two conflicting demands: (i) due to the gradual stiffness degradation of a fibre-reinforced composite material under fatigue, stresses are continuously redistributed across the structure and as a consequence, the simulation should follow the complete path of successive damage states; (ii) the finite element simulation should be fast and computationally efficient to meet the economic needs. The authors have adopted a cycle jump approach which allows to calculate a set of fatigue loading cycles at deliberately chosen intervals and to account for the effect of the fatigue loading cycles in between in an accurate manner. The finite element simulations are compared against the results of fatigue experiments on plain woven glass/epoxy specimens with a [#45°]8 stacking sequence.  相似文献   

15.
Fatigue Crack Propagation Threshold: Material Property and Design Criteria The fatigue crack propagation threshold has been determined by two experimental methods covering the tension-tension fatigue regime. The two experimental methods are boundary conditions for this fatigue regime. A third experimental method positions the threshold somewhere between Kmax and Kmin such that because of the ?Closure Parameter Kop”? the threshold is not positioned below 0.5 Kmax. The results obtained show that a threshold exists under all fatigue loading conditions and – depending on the subject, material – is either a material property or a material parameter which depends on Kmax  相似文献   

16.
Estimation of Endurance Limit under Multiaxial Loading Multiaxial criteria for endurance limit prediction of metallic materials will be discussed in this paper. The Shear Stress Intensity Hypothesis SIH is improved under consideration of the variable fatigue limit ratio τww and mean stress effects. Fatigue behaviour under synchronous and nonsynchronous stresses and influences such as mean stresses, out-of-phase stresses, different frequencies, nonsinusoidal stress time function are analysed theoretically and verified with test results. The prediction according to SIH shows good agreement with the test results. Based on an extensive statistical investigation it can be recommended to use the SIH for ?crack free materials”? and the normal stress hypothesis NSH for ?materials with cracks”?. For components the hypothesis SIH and NSH are developed under consideration of the notch effect. In this study a concept for the prediction of endurance limit under multiaxial loads has been developed.  相似文献   

17.
An experimental procedure to estimate damage evolution and remaining fatigue life of metals associated with fatigue loading is presented. Experimental phase involves uniaxial tension–compression fatigue tests performed with solid API 5L X52 and tubular carbon steel 1018 specimens subjected to both constant and variable amplitude loading. A correlation between the so-called damage parameter and the thermal response of a material at different damage levels is proposed. Results demonstrate that the correlation can estimate damage evolution with reasonable accuracy in both constant and variable amplitude fatigue processes. It is shown that under the conditions tested the evolution of damage parameter with respect to the normalized fatigue life is independent of the load amplitude, load ratio, loading sequence, material properties, and specimen geometry. The proposed correlation and the relationship between the damage parameter and the normalized fatigue life are employed to develop a non-destructive method to predict the remaining fatigue life of metallic specimens with prior fatigue damage. The method is applied to both constant and variable amplitude loading and the predicted results are found to be in good agreement with those obtained from the experiments.  相似文献   

18.
X-ray (XR) diffraction is a well-known experimental technique used for measuring residual stresses in metallic materials. If we apply the XRD technique to the fracture surface of a broken part, it becomes a fractographical technique, that is to say that it is possible to relate the results of the measurement to the loading condition that lead a component to fail. However, in the past this technique was mainly used to analyse standard specimens and not mechanical components and there are few experimental investigations concerning the possibility of using this technique to investigate the cause of fatigue failures. In this paper, after a brief introduction to the technique, XRD fractography is applied to a diesel engine crankshaft that failed under known fatigue loading. It was possible to determine the load that lead the crankshaft to fail and to evidence some original aspects about the application of this technique to real machine parts. Comparison with finite element results served to confirm that XRD can be used as complementary tool to scanning electron microscope (SEM) observation or as a substitute to SEM observation, in the case of damaged fracture surface.  相似文献   

19.
This paper experimentally analyzes the influence of temperature and type of matrix on the delamination process of two composites subjected to fatigue loading through the study of their fracture under mode I behavior. The materials were manufactured with the same AS4 unidirectional carbon reinforcement and two epoxy matrices with different fracture behavior. The chosen temperatures for the experiments were 20 (room temperature), 50 and 90 °C.The experimental study carried out under dynamic loading enabled the authors to determine the influence that temperature has on the onset of delamination for the entire range of fatigue life of the material, from the low number of cycles zone to the high number of cycles zone. That is, it enabled the plotting of fatigue curves, represented as GImaxN (number of cycles required for the onset of delamination given a certain energy release rate) for an asymmetry coefficient of 0.2 (the ratio between the maximum and minimum fracture energies applied during the dynamic tests).The experimental data obtained were treated with a probabilistic model based on a Weibull distribution which allowed the identification of relevant aspects of the fatigue behavior of the materials such as the estimation of fatigue strength for periods greater than the tested values and the analysis of the reliability of the results.  相似文献   

20.
Advances in higher resolution experimental techniques have shown that metallic materials can develop fatigue cracks under cyclic loading levels significantly below the yield stress. Indeed, the traditional notion of a fatigue limit can be recast in terms of limits associated with nucleation and arrest of fatigue cracks at the microstructural scale. Although fatigue damage characteristically emerges from irreversible dislocation processes at sub-grain scales, the specific microstructure attributes, environment, and loading conditions can strongly affect the apparent failure mode and surface to subsurface transitions. In this paper we discuss multiple mechanisms that occur during fatigue loading in the high cycle fatigue (HCF) to very high cycle fatigue (VHCF) regimes. We compare these regimes, focusing on strategies to bridge experimental and modeling approaches exercised at multiple length scales and discussing particular challenges to modeling and simulation regarding microstructure-sensitive fatigue driving forces and thresholds. We conclude by discussing some of the challenges in predicting the transition of failure mechanisms at different stress and strain amplitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号