首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Taeyi Choi  Ajay Padsalgikar 《Polymer》2009,50(10):2320-2706
Segmented polyurethane block copolymers were synthesized using 4,4′-methylenediphenyl diisocyanate (MDI) and 1,4-butanediol (BDO) as hard segments and various soft segments derived from poly(hexamethylene oxide) (PHMO) and poly(dimethylsiloxane) (PDMS)-based macrodiols and mixtures thereof. The microstructure and degrees of phase separation were characterized using a variety of experimental methods. Copolymers synthesized with the PDMS macrodiol and from PDMS/PHMO macrodiol mixtures were found to consist of three phases: a PDMS phase; hard domains; and a mixed phase of PHMO, PDMS ether end group segments and some dissolved hard segments. Two models were used to characterize the small-angle X-ray scattering from these copolymers: pseudo two-phase and core-shell models. Analysis using both methods demonstrates that as the PDMS content in the soft segment mixture increases, the greater the fraction of hard segments involved in hard domains than are dissolved in the mixed phase. Findings from analysis of the carbonyl region of FTIR spectra are also in agreement with greater hard/soft segment demixing in copolymers containing higher PDMS contents.  相似文献   

2.
Taeyi Choi  Ajay Padsalgikar 《Polymer》2010,51(19):4375-872
Segmented polyurethane (PU) block copolymers were synthesized using 4,4′-methylenediphenyl diisocyanate and 1,4-butanediol as hard segments and oligomeric ethoxypropyl polydimethylsiloxane (PDMS) as the soft segments, with hard segment contents ranging from 26 to 52 wt%. The microphase separated morphology, phase transitions, and degrees of phase separation of these novel copolymers were investigated using a variety of experimental methods. Like similar copolymers with mixed ethoxypropyl PDMS/poly(hexamethylene oxide) soft segments, PU copolymers containing only ethoxypropyl PDMS soft segments were found to consist of three microphases: a PDMS matrix phase, hard domains, and a mixed phase containing ethoxypropyl end group segments and dissolved short hard segments. Analysis of unlike segment demixing using small-angle X-ray scattering demonstrates that degrees of phase separation increase significantly as copolymer hard segment content increases, in keeping with findings from Fourier transform infrared spectroscopy measurements.  相似文献   

3.
The purpose of this study was to investigate the effects of polyol on glycidyl azide polyol (GAP)‐based energetic thermoplastic polyurethane elastomers (ETPEs). Briefly, a series of GAP/polyol‐based ETPEs (GAP/polyol ETPEs) with different copolyol ratios and hard segment contents were synthesized using GAP‐diol with common polyol and 4,4‐methylenebis(phenylisocyanate)‐extended 1,5‐pentanediol as soft and hard segments, respectively, by solution polymerization in dimethylformamide. The three types of polyols used were poly(tetramethylene ether) glycol (PTMG), polycarbonate‐diol (PCL‐diol) and polycaprolactone‐diol (PCD‐diol). The synthesized GAP/polyol ETPEs were identified and characterized using Fourier transform infrared and 1H NMR spectroscopy, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and rheometric mechanical spectrometry. For GAP/PCL ETPEs with lower hard segment content, DSC results showed that the GAP segment failed to interact with either the PCL segment or PCL melting. In addition, the results of DMA showed that the presence of PCL segments in ETPEs improved the storage modulus below the melting temperature of the PCL block. Further, the crystalline PCL segments were attributed to reinforcing the ETPEs in a manner similar to that of the hard domain. As the hard segment content increased in the GAP/polyol ETPEs, both GAP/PTMG ETPEs and GAP/PCL ETPEs exhibited microphase separation transitions, while rheological experiments demonstrated a sudden decrease in complex viscosity in neighboring microphase separation transitions. © 2012 Society of Chemical Industry  相似文献   

4.
A series of polyurethane elastomers with a (A{BC}m)n type of structure have been prepared and characterized based on poly(propylene glycol) modified poly(ethylene ether carbonate) polyols, where the poly(propylene glycol) content and block length were varied systematically. Strength and modulus properties showed a marked dependence on modifier level and exhibited synergistic property improvements at 25–50 wt % modifier, relative to both unmodified poly(ethylene ether carbonate) diol and poly(propylene glycol) controls. DMA results indicated an increased modulus for the modified plaques throughout the rubbery plateau region, with higher thermal dissociation temperatures. Excellent organic solvent resistance was maintained with 25–50 wt % poly(propylene glycol) modification in the soft segment. Chemical structure of the polyurethane elastomers was established by proton and 13C-NMR spectroscopy. The morphology of these modified polyurethanes appears to be quite complex. Since the modified soft segments are block copolymers of blocks with a tendency toward immiscibility, some microphase separation within the soft segment domains of the polyurethane polymers might be expected. The soft segment Tg is highest where properties are maximized, suggesting changes in phase mixing. © 1992 John Wiley & Sons, Inc.  相似文献   

5.
Fengfei Xiao  Shen Deyan  Xian Zhang  Shiru Hu  Mao Xu   《Polymer》1987,28(13):2335-2345
Solution-cast specimens of poly(vinyl chloride)/polyurethane (PVC/PU) blends were studied by means of infra-red, differential scanning calorimetry and dynamic mechanical measurements. Polyurethanes with polycaprolactone, poly(tetramethylene adipate), poly(tetramethylene oxide) and poly(propylene oxide) of the same molecular weight (1000) were used. The results indicate that it is possible to change the morphology of the blends significantly by proper selection of the structure of the soft segments. The polyester soft segments are more compatible with PVC than are the polyether ones. Hydrogen bonding of NH groups with the urethane carbonyl of the hard segments and with the ester carbonyl and ether oxygen of the soft segments was studied by applying a curve resolution technique to the NH and carbonyl stretching vibration absorption peaks of the blends. Information about the distribution of hydrogen bonding between the different acceptors was used to discuss the segregation and mixing of the hard and soft segments at different PVC contents of the blends. Morphological models were proposed for blends of different compatibility between PVC and the soft segments.  相似文献   

6.
A series of thermoplastic polyurethane elastomers (TPUs) with various hard-segment contents was prepared using 4,4′-diphenylmethane diisocyanate and 1,4-butanediol as the hard segment and poly(ethylene adipate)diol or poly(butylene adipate)diol, whose number-average molecular weight is 2000, as the soft segment. The miscibility of TPU/polycarbonate (PC) blends observed by differential scanning calorimetry was enhanced by the interchange reaction at high temperature. Both hard and soft segments were suggested to be involved in the interchange reaction with PC. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2363–2369, 1997  相似文献   

7.
Series of polyurethaneurea elastomers were prepared from 4,4′-diphenylmethane diisocyanate, poly(teuramethylene ether) glycol and poly(hexamethylene carbonate) glycol for mixed soft segments, and 1,4-butanediol and isophoronediamine for mixed chain extenders. Characteristics of the copolymers related with compositions were examined. FT-IR spectra showed that most of the urea carbonyl groups associated in hydrogen bonding, while urethane carbonyls only partially did so. Thermal and mechanical properties were investigated through differential scanning calorimetry and tensile testing. These thermal and mechanical properties are discussed from the viewpoint of microphase domain separation of hard and soft segments. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The effect of poly(dimethylsiloxane) (PDMS) or polypropylene glycol (PPG) linear chain and polyoctahedral oligosilsesquioxanes (POSS) cubic nanoparticles on surface and gas transport properties of poly(dimethylsiloxane-urethane) PDMS-PU or poly(propylene glycol-urethane) (PPG-PU) hybrid membranes were studied. PDMS-PU or PPG-PU hybrid membranes were prepared using PDMS-diol or PPG-diol as a chain extender and diisocyanate with POSS-amine macromonomer as a crosslinker. The macromer synthesized was characterized using FT-IR, 1H-, 13C- and 29Si-NMR spectroscopic methods. The hybrid membranes were characterized by CP-MAS 29Si-NMR, DSC, contact angle, WAXD, AFM and density measurements. The glass transition temperature (Tg) of the hybrid membranes were determined by differential scanning calorimetry (DSC) and were found to be in the range of 176–189°C. The surface free energy was reduced by increasing the POSS-amine crosslinker content of the membranes. The AFM measurement showed phase separation of POSS-amine molecule and PDMS with the urethane matrix on the surfaces. The XRD profiles confirm that the membranes were highly amorphous in nature. The decrease in permeability was observed by increasing the concentration of POSS-amine incorporated hybrid membranes. The selectivities of O2/N2 and CO2/N2 gas pairs increased with an increase in the POSS concentration. This suggests that the selectivities were dependent mainly on the presence of urethane and ester functional groups in the crosslinker.  相似文献   

9.
High‐performance shape‐memory polyurethane block copolymers, prepared with two types of poly(tetramethylene glycol) (PTMG) used as soft segments, were investigated for their mechanical properties. Copolymers with a random or block soft‐segment arrangement had higher stresses at break and elongations at break than those with only one kind of PTMG. Random copolymers with fewer interchain interactions showed higher elongation than block copolymers. All the copolymers had shape‐recovery ratios higher than 80%. In dynamic mechanical testing, the glass‐transition behavior clearly depended on the soft‐segment arrangement: random copolymers had only one glass‐transition peak, whereas block copolymers showed two separate glass‐transition peaks. Overall, the control of the soft‐segment arrangement plays a vital role in the development of high‐performance shape‐memory polyurethane. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2410–2415, 2004  相似文献   

10.
In this paper we explore the temperature dependence of segregation of hard and soft segments of selected segmented polyurethane copolymers using synchrotron small-angle X-ray scattering (SAXS). The copolymers are composed of the same hard segments but three different soft segment chemistries, of particular interest in biomedical device applications. Hard segments are formed from 4,4′-methylenediphenyl diisocyanate and 1,4-butanediol, and soft segments from an aliphatic polycarbonate [poly(1,6-hexyl 1,2-ethyl carbonate)], poly(tetramethylenoxide), or a mixed soft segment synthesized from hydroxyl-terminated poly(dimethylsiloxane) [PDMS] and poly(hexamethylenoxide) macrodiols. The changes in SAXS relative invariants and interdomain spacings are indicative of gradual dissolution of phase separated hard and soft segments with increasing temperature. All copolymers investigated herein, even those containing PDMS soft segments, transform to the single-phase state at a temperature determined by the soft segment chemistry (and hard segment content). The SAXS findings, along with those from parallel temperature-controlled Fourier Transform infrared spectroscopy measurements, also facilitate assignment of the origin of the thermal events observed in the DSC thermograms of these materials.  相似文献   

11.
Two series of thermoplastic polyurethane elastomers [poly(propylene glycol) (PPG) based PP samples and poly(oxytetramethylene)glycol (PTMG) based PT samples] were synthesized from isophorone diisocyanate (IPDI)/1,4-butanediol (BD)/PPG and IPDI/BD/PTMG. The IPDI/BD based hard segments contents of polyurethane prepared in this study were 40–73 wt %. These polyurethane elastomers had a constant soft segment molecular weight (average Mn, 2000) but a variable hard segment block length (n, 3.5–17.5; average Mn, 1318–5544). Studies were made on the effects of the hard segment content on the dynamic mechanical thermal properties and elastic behaviors of polyurethane elastomers. These properties of PPG based PP and PTMG based PT samples were compared. As the hard segment contents of PP and PT samples increased, dynamic tensile modulus and α-type glass transition temperature (Tg) increased; however, the β-type Tg decreased. The permanent set (%) increased with increasing hard segment content and successive maximum elongation. The permanent set of the PT sample was lower than that of the PP sample at the same hard segment content. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1349–1355, 1998  相似文献   

12.
Block copolyetheresters with hard segments of poly(trimethylene 2,6‐naphthalene dicarboxylate) and soft segments of poly(tetramethylene ether)glycol 2,6‐naphthalene dicarboxylate were prepared by the melt polycondensation of dimethyl 2,6‐naphthalene dicarboxylate (NDC), 1,3‐propanediol (PD), and poly(tetramethylene ether)glycol (PTMEG) with molecular weights of 1000. The block copolyetheresters were characterized by 1H‐NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The block copolyetheresters synthesized with NDC/PD/PTMEG were more heat resistant than those synthesized with dimethyl terephthalate/PD/PTMEG. The block copolyetheresters synthesized with NDC/PD/PTMEG showed stronger elastoplastic behavior than those synthesized with NDC/1,4‐butanediol/PTMEG. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 139–145, 2003  相似文献   

13.
综合考虑聚酯型聚氨酯和聚醚型聚氨酯的特点,以聚己二酸丁二醇酯(PBAG)和聚乙二醇(PEG)混合作为软段,采用溶液预聚法制备了聚酯-聚醚混合型聚氨酯。考察了混合软段中PEG摩尔分数以及PEG相对分子质量对聚氨酯薄膜的表面接触角、吸水率、透湿率及力学性能的影响。结果表明,随着PEG摩尔分数的增大和PEG相对分子质量的增大,薄膜的接触角和拉伸强度降低,吸水率、透湿率增大。当PEG摩尔分数从0.28增加到0.71时,薄膜接触角从75.8°降低至63.5°,吸水率从25.7%增加到106.1%,透湿率从1226g/(m2·24h)增加到3408g/(m2·24h);PEG相对分子质量从1000增加到10000时,薄膜接触角从80.5°降到55.7°,吸水率从4.5%增加到356.4%,透湿率从733g/(m2·24h)增加到3577g/(m2.24h)。  相似文献   

14.
Two poly(ether urethane urea)s were synthesized, one based on poly(propylene glycol) and another one on poly(tetramethylene glycol). Hydrogenated MDI was used as the diisocyanate and propylenediamine as the chain extender. The diisocyanate : polyol : diamine molar ratio was 2 : 1 : 1 for both copolymers. Data from stress-relaxation tests were adjusted to a power law and to the Kohlraush-William-Watts equation. Phase separation and viscoelastic behavior were correlated through the calculation of the time-relaxation spectrum, the steady-state tensile compliance, and the tensile viscosity. The results indicated that the material based on poly(tetramethylene glycol) was the more effectively phase-segregated block copolymer. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2227–2236, 1997  相似文献   

15.
Polyurethane–urea anionomer dispersions with different stoichiometric DMPA/polyol and NCO/OH ratios were preapred from poly(oxypropylene)glycol, toluene diisocyanate (TDI), dimethylolpropionic acid (DMPA), and ethylenediamine (EDA). The dispersion-cast films were prepared and characterized by mechanical properties, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). Increasing the hard-segment content by either increasing the DMPA/polyol or the NCO/OH ratios affects the glass transition temperature (Tg) of the soft segments. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Segmented poly(urethane–urea)s have been synthesized with mixed soft segments of ultra-low monol content poly(propylene glycol) (PPG) and tri(propylene glycol) (TPG) which allows the fabrication of quality elastomers without crosslinking. The narrow molecular weight distribution of the ultra-low monol content PPG polyols allows for the probing of the influence of the low molecular components of the molecular weight distribution through the inclusion of low molecular homologs of PPG such as TPG. Structure–property relationships for these materials were investigated as average soft segment molecular weight was varied by blending 8000 g/mol PPG with TPG to achieve molecular weights of 2500, 2000, and 1500 g/mol. Morphological features such as microphase separation, interdomain spacing and interphase thickness were quantified and revealed with SAXS. AFM was utilized to verify the microphase separation characteristics inferred by SAXS. The thermal and mechanical behavior was assessed through applications of DMA, DSC, and conventional mechanical tests. It was found that as the average soft segment molecular weight was decreased through the addition of TPG, the interdomain spacing distinctly increased contrary to the trend seen for decreasing soft segment molecular weight in PPG based systems without TPG. Additionally, the inclusion of TPG in the poly(urethane–urea) formulations resulted in the formation of larger hard domains as evidenced by AFM. These results and supporting evidence from DMA, DSC, birefringence, and mechanical testing led to the conclusion that TPG apparently acts more as a chain extender as well as, or in contrast to, a soft segment.  相似文献   

17.
Soft drinks poly(ethylene terephthalate) (PET) bottles were depolymerized by glycolysis using a 1 : 3 molar ratio of PET repeating unit to glycols like neopentyl glycol (NPG) and dipropylene glycol (DPG). Further, a series of waterborne polyurethanes (WPUs) was synthesized using pure polypropylene glycol (PPG), and glycolyzed oligoesters/PPG blends in different molar ratios as soft segment. Thermal property of WPU was tested by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Moreover, viscosity and particle size of WPU were also investigated. The results show that introduction of a certain amount of glycolyzed oligoester to soft segment makes the degree of hard‐soft domain microphase separation smaller, and can also improve thermal stability of WPU. Furthermore, WPUs synthesised from glycolyzed oligoesters and PPG blends possess larger particle size, better particle size distribution, relative lower and more stable viscosity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42757.  相似文献   

18.
Hydroxypropyl lignin-based thermosetting polyurethanes containing polybutadiene (PBD) glycol soft segments (Mn of 2800 g M?1) were synthesized with excess hexamethylene diisocyanate (HDI) and tolylene diisocyanate (TDI) by solution casting. Miscibility of the glycol with the lignin derivative was found to be poor as expected, and phase separation between the two polyol components in polyurethanes was detected by thermal and mechanical analysis, and by electron microscopy. This study examines the effect of concentration of polybutadiene glycol on the thermal and mechanical properties of the polyurethanes. The two-phase network system displayed significantly different properties than either the poly(ethylene glycol)-containing polyurethanes or their soft segment-free counterparts described previously. Macrophase separation was observed at nearly all degrees of mixing and was found to affect thermal and mechanical properties. The glass transition temperature (Tg) of the lignin phase in the TDI-based networks increased with poly(butadiene glycol) content rising from 3.6 to 71.4% of polyurethane, and this was attributed to the employment of a constant diisocyanate weight fraction which gave rise to a variable NCO/OH ratio and crosslink density. Distinct phase separation was evidenced by scanning electron microscopy (SEM) at above 3.6 and 7.1% glycol content for HDI- and TDI-based films, respectively. The polyurethane films behaved like rubber-toughened lignin networks when PBD was the discrete phase, and like lignin-reinforced rubber when the lignin derivative was discrete. This behavior was evidenced by the Young's modulus decreasing from 2000 to 50 MPa and ultimate strain rising from 6 to greater than 150%, with soft segment content increasing from 0 to 71.4%.  相似文献   

19.
This paper described the synthesis of four types of polyurethanes by using diisocyanato dicyclohexylmethane (H12MDI) as the hard segment and poly hexamethylene carbonate diol, polybutylene adipate diol, poly(hexamethylene diol/neopentyl glycol)-based copolyester diol, or poly hexamethylene diol/hexamethylene carbonate)-based copolyester/carbonate diol as the corresponding soft segment. The spectral analysis, thermal studies (differential scanning calorimetry and dynamic mechanical analysis), tensile strength-elongation relationship, and water vapor permeability of these samples were investigated. The results of these studies showed that the phase separation extent of the four types of polyurethanes displayed the following order: ESBA (polybutylene adipate-based polyurethane) > ECHH (co-polyester / carbonate-based polyurethane) > ESHN (copolyester diol-based polyurethane) > CAHC (polyhexamethylene carbonate-based polyurethane). The water vapor permeability of the cast films increased with the increase of the phase separation extent, in which the polyester-based polyurethane (sample ESBA) displayed the highest water vapor permeability. In terms of tensile strength-elongation property, the polycarbonate diol based polyurethane displayed higher tensile strength but lower elongation than polyester-based polyurethanes.  相似文献   

20.
以甲苯二异氰酸酯(TDI)、1,4-丁二醇(BDO)为硬段,聚碳酸酯二醇(PCDL)和聚醚二醇(PPG)混合物为软段,采用预聚体法制备了不同软段组成的聚氨酯弹性体(PUE)。采用DSC、FT—IR和DMA等分析手段研究了PCDL含量对PUE的微相分离程度和阻尼性能的影响。结果表明,随着软段中PCDL含量的增加,PUE中氨酯羰基的氢键化程度减小,相分离程度减小,而且PUE的储能模量随着PCDL含量的增加而减小;与单一组分软段的PUE相比较,混合软段的PUE具有相对较好的阻尼性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号