首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(butyl acrylate‐vinyl acetate‐acrylic acid) based acrylic pressure sensitive adhesives (PSAs) were synthesized by solution polymerization for the fabrication of high performance pressure sensitive adhesive tapes. The synthesized PSAs have high shear strength and can be peeled off substrate without residues on the substrate at temperature up to 150°C. The PSAs synthesized in the present work are single‐component crosslinked and they can be used directly once synthesized, which is convenient for real applications compared to commercial multi‐component adhesives. The results demonstrated that the viscosity of the PSAs remained stable during prolonged storage. The effects of the preparation conditions such as initiator concentration, cross‐linker amount, organosiloxane monomer amount and tackifier resin on the polymer properties, such as glass transition temperature (Tg), molecular weight (Mw), surface energy and shear modulus, were studied, and the dependence of the adhesive properties on the polymer properties were also investigated. Crosslinking reactions showed a great improvement in the shear strength at high temperature. The addition of tackifier resin made peel strength increase compared to original PSAs because of the improvement of the adhesion strength. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40086.  相似文献   

2.
The viscoelastic and adhesive properties of a series of model, lightly crosslinked acrylic polymer networks have been investigated. The model networks were statistical copolymers of 2-ethyl-hexyl acrylate and acrylic acid or terpolymers of 2-ethyl-hexyl acrylate, acrylic acid, and stearyl acrylate synthesized in solution. All were lightly crosslinked after the polymerization was completed to obtain typical properties of pressure-sensitive adhesives. The bulk rheological properties of the networks were characterized by dynamical mechanical spectroscopy and in uniaxial extension. Their adhesive properties were tested with an instrumented probe tester fitted with a cylindrical steel probe. The presence of acrylic acid in the copolymer caused an increase in both elastic modulus and resistance to interfacial crack propagation characterized by the critical energy-release rate Gc and the incorporation of stearyl acrylate caused a decrease in both modulus and Gc. In both cases, however, the modification of Gc controlled the overall behavior. The analysis of the nonlinear elastic properties of the adhesives with the Mooney-Rivlin model provided new insights on the role played by the ratio between entanglements and crosslink points in controlling the formation and extension of the bridging fibrils observed upon debonding.  相似文献   

3.
The synthesis and characterization of solventless acrylic UV crosslinkable pressure sensitive adhesives are presented. Different prepolymers were synthesized using bulk polymerization procedure. The reaction mixture consisted of acrylic monomers (2-ethylhexyl acrylate, acrylic acid and t-butyl acrylate), azobisisobutyronitrile initiator, chain transfer agent n-dodecylmercaptan and unsaturated UV photoinitiator 4-acryloyloxybezophenone, which was copolymerized into polymer backbone. Different formulations were tested and the prepolymer was characterized by viscosity measurements and final monomer conversions. The prepolymers were coated onto PET foil and crosslinked by application of UV light source. Peel adhesion at 180° on glass plate was measured. Gel phase was determined using the Soxhlet extraction and copolymer glass transition temperatures (Tg) were analyzed by differential scanning calorimetry (DSC). Results showed that the final monomer conversions in highly exothermic bulk polymerization reached a level between 75% and 90%. Prepolymer viscosity was highly influenced by change in polymer molecular weight and by addition of acrylic acid as a comonomer. On the other hand, the viscosity remained at the low level when t-butyl acrylate was used. The amount of gel phase for all adhesives was above 60 wt.%. Peel strength measurements showed decrease in peel strength with decreasing polymer molecular weight and increase of peel, when acrylic acid was used as a comonomer. All adhesive coatings with t-butyl acrylate comonomer showed cohesive failure.  相似文献   

4.
This article shows the influence of parameters such as acrylic acid, initiator content, molecular mass, viscosity, content of methyl acrylate, content of ethyl acrylate, and content of N-vinyl caprolactam on such important parameters of pressure-sensitive adhesives as shrinkage, plasticity, adhesion to the steel, and deformation. Pressure-sensitive adhesives based on acrylic polymers and containing 2-ethylhexyl acrylate, methyl acrylate, acrylic acid, and N-vinyl caprolactam are used for production of self-adhesives containing polyvinyl chloride carrier. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3212–3219, 2001  相似文献   

5.
A synthesis and characterization of nanocomposite solventless acrylic UV crosslinkable pressure sensitive adhesives is presented. Different prepolymers were synthesized using bulk polymerization procedure. The reaction mixture consisted of acrylic monomers (2-ethylhexyl acrylate, acrylic acid and t-butyl acrylate), azobisisobutyronitrile initiator, chain transfer agent n-dodecylmercaptan and unsaturated UV photoinitiator 4-acryloyloxybezophenone. Different formulations with different amounts of modified and unmodified montmorillonite (MMT) clays were tested and the prepolymer was characterized by viscosity measurements. UV crosslinking process was monitored using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Gel phase amount in crosslinked samples was determined by Soxhlet extraction. Clay dispersion in polymer matrix was investigated by X-ray diffraction analysis (XRD). Three basic adhesive properties, the tack, peel and shear strength were measured and the viscoelastic properties of crosslinked adhesive films were characterized using dynamic mechanical analysis (DMA). Results of the study showed high increase in prepolymer viscosity, when hydrophobic types of MMT clays were added in the reaction mixture. The addition of clay had a negative effect on UV crosslinking process. XRD analysis confirmed complete exfoliation and/or intercalation of modified clays in polymer matrix, depending on modifier amount and type. Results of adhesive properties testing showed a major influence of clay addition on adhesive properties, especially on shear strength. DMA analysis showed an increase in storage modulus (G′) and a decrease of tan δ values for adhesives synthesized with clay what also concurs with higher shear strength and implies an improved cohesion of adhesive.  相似文献   

6.
In this study, the synthesis and characterization of acrylic polymer/montmorillonite (MMT) clay nanocomposite pressure sensitive adhesives (PSA) are presented. Different types and amounts of modified and unmodified montmorillonite clays were dispersed in ethyl acrylate (EA)/2-ethylhexyl acrylate (2-EHA) monomer mixture, which was then polymerized using a suspension polymerization technique. Polymerization was monitored in-line using attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy. The adhesion properties of the synthesized nanocomposite materials were determined using standard measurements of tack, peel and shear strength. Viscoelastic properties of dried adhesive films were analyzed using dynamic mechanical analysis (DMA). The results showed that the kinetics of suspension polymerization was independent of the addition of MMT clays. On the other hand, adhesive properties were strongly influenced by the type and the amount of MMT clay added. While peel strength and tack gradually decreased with higher amount of modified MMT clay, a substantial increase in shear strength was determined with a maximal value at 1 wt% of added MMT clay. Moderate influence on tack, peel and shear strength was observed when the unmodified type of MMT clay was used. DMA analysis showed an increase in storage modulus (G′) for adhesives synthesized with MMT clay addition, but no significant differences were determined between particular types of MMT clays. A decrease in tan δ value for adhesives with 1 wt% of added MMT clay was observed, which also concurs with higher shear strength and implies to the improved cohesion of adhesive.  相似文献   

7.
Different pressure‐sensitive adhesives (PSAs) based on acrylic monomers were synthesized under different reaction conditions. The synthesized PSAs have good adhesive properties and without leaving any residue can be easily peeled off from the surface of a substrate. The relationship between PSAs rheological behavior and its adhesion properties (e.g., peel, tack, and shear resistance) has been studied at constant adhesive thickness. The samples were examined for their surface energy and viscoelastic characteristics. It was observed that increase in reaction temperature and reaction time results in decreased storage modulus due to lowered molecular weight, which finally leads to lower elasticity of the PSA. While the storage (G′) and loss (G″) modulus of samples increase with increased initiator concentration, the elasticity of PSA is increased as well. High G″ at high frequency (100 Hz) represents high peel strength because of higher dissipation of viscoelastic energy during debonding. The tack values increase by lowering storage modulus at 1 Hz due to higher Me. Shear values are increased by higher storage modulus at low frequency (0.1 Hz) due to hydrogen bonding of the different components. Some parallel investigations on the surface energy of the samples showed that they have different properties because of the nature of different monomeric units with their corresponding orientations. Our results reveal that the peel strength is not affected by surface energy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
ABSTRACT

The acrylic copolymers involving 2-hydroxyethyl acrylate (HEA) and tert-butyl acrylate (tBA) units as reactive units behave as pressure-sensitive adhesive type dismantlable adhesive materials. In order to clarify the individual role of HEA and tBA units on dismantlability, the 180° peel behavior after the dismantling treatment, i.e., heating in the presence of given amount of acid catalysts, was systematically investigated using the acrylic copolymers involving different amounts of the reactive units. It was revealed that transesterification of HEA units resulted in an increase in the cohesive force and modulus due to an increase in the molecular weight and cross-linking. Deprotection of tBA units, i.e., transformation of tBA to acrylic acid (AA) unit with isobutene evolution, promoted cross-linking by the esterification of AA units and tended to reduce a cohesive force by forming voids in the adhesive layer due to the evolution of isobutene gas. Interfacial failure in the peel tests corresponded with a high degree of cross-linking and increased modulus of the adhesive. Conversely, cohesive failure was associated with reduced cohesive strength of the adhesive layer and a low peel strength.  相似文献   

9.
To facilitate the fabrication of a reliable semiconductor package, the UV/heat dual curing of film adhesives was investigated. The curing system of the epoxy resin affected the film adhesive properties. As the UV/heat dual‐curable epoxy resin, a modified o‐cresol novolak epoxy resin, in which half of the glycidyl groups were substituted by acryloyl groups (OCN‐AE), was applied to the film adhesive. The formulated film adhesive contained acrylic copolymer, OCN‐AE, phenolic aralkyl resin as a heat‐curing agent of the glycidyl groups, and 1‐hydroxycyclohexyl phenyl ketone as a photoinitiator of the acryloyl groups. The formulated reference film adhesive contained unmodified o‐cresol novolak epoxy resin (OCN‐E) in place of OCN‐AE. Formulated film adhesives containing a mixture of OCN‐E and o‐cresol novolak epoxy acrylate were also used as references. The morphology and the film adhesive properties were investigated. In these investigations, the film adhesive of OCN‐AE showed better adhesive properties, lower modulus, and a better stress‐relaxation ability than the referenced adhesives. As a result, a reliable film adhesive for semiconductor packages was successfully developed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Abstract

n-Dodecyl mercaptan (DDM) chain transfer agent and 1,6-hexanediol diacrylate (HDDA) cross-linker were used to manipulate latex properties in a monomer-starved seeded semi-continuous emulsion polymerization of butyl acrylate (BA), fluorine monomer dodecafluoroheptyl methacrylate (DFMA) together with acrylic acid (AA) and 2-hydroxyethyl acrylate (HEA). The influences of both DDM and HDDA on the particle size of the latex, as well as on the gel content, thermostability (differential scanning calorimeter and thermal gravimetric analysis), surface properties (X-ray photoelectron spectra (XPS), contact angle analysis and atomic force microscopy), and viscoelasticity (N,N-dimethylacrylamide) of the polymer films were investigated. The results showed that the introduction of DDM and HDDA has no significant effects on the final particle size of the fluorinated pressure-sensitive adhesives (PSA) latexes. XPS analysis indicated that the fluoroalkyl groups had the tendency to enrich on the surface of the film. However, this enrichment of fluorine on the film surface was reduced after the introduction of HDDA, while increased with the addition of DDM. It was also found that the gel content, glass transition temperature (Tg), thermal stability, surface roughness, and modulus (G′, G?) of the fluorinated latex PSA were all increased with the introduction of HDDA. Nevertheless, opposite trends were observed for the latex after the addition of DDM. Finally, the effects of DDM and HDDA on the adhesive properties (i.e. loop tack, peel strength and shear strength) of the fluorinated latex PSA were also evaluated.  相似文献   

11.
This study designs less corrosive optically clear adhesives (OCAs) with good rework properties, where copolymer and glycidyl methacrylate (GMA) are cured by ultraviolet to form OCAs. The copolymer are synthesized by using N,N‐diethylacrylamide (DMA), acrylic acid (AA), and 2‐ethylhexyl acrylate. The DMA and AA could form acid–base interaction and therefore lower the corrosion on metallic substrate caused by AA. Copolymer is applied in OCAs, as different adhesive properties are presented. In terms of the adhesive property of OCAs, the peel strength, shear strength, and transmittance property are decreased when the GMA concentration is increased. The tack and haze are enhanced accordingly. After 7 days' standing at 60 °C and 90% RH, OCAs have no obvious corrosion on the conductive glass circuits, and there is no residue after peeling off. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46277.  相似文献   

12.
The present paper first discusses the problems that occur when thermoplastic-based fibre-composite materials are bonded using structural engineering adhesives, such as epoxy and acrylic adhesives. A double-cantilever beam joint has been employed and it is shown that the value of the adhesive fracture energy, Gc , is very low when a simple abrasion/solvent wipe pretreatment is used for the thermoplastic fibre-composites. This arises from crack growth occurring along the adhesive/composite interface, which is relatively weak when such a pretreatment is employed. Secondly, it is demonstrated how very effective a corona surface pretreatment may be for these materials. Indeed, when such a pretreatment is used, interfacial crack growth is no longer observed but the crack now propagates either cohesively in the adhesive or through the composite substrate; both failure modes lead to relatively high values of Gc , with the former resulting in the highest values of Gc being recorded. Finally, from measuring the fracture properties of the composites and combining these data with a detailed analysis of the stresses in the DCB joint, calculated using a finite element analysis, the reasons for these different loci of failure may be readily understood and predicted.  相似文献   

13.
This article shows the influence of some chain‐transfer agents as inhibitors for acrylic solvent‐based polymerization. These chain‐transfer agents can offer significant advantages, as outlined below. The following chain‐transfer agents were studied to stop or slow down the polymerization process in the case of a runaway: n‐dodecyl mercaptan, trimethylolpropane‐trimercaptoacetate, phenothiazine, diphenylphenylen diamine, cuprum oxide, isopropanol, toluene, and carbon tetrachloride. Synthesized pressure‐sensitive adhesive based on acrylic polymers and containing 2‐ethylhexyl acrylate, methyl acrylate, and acrylic acid were used for the production of self‐adhesives with high cohesion. The polymerization was accomplished in ethyl acetate. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1354–1357, 2003  相似文献   

14.
Acrylic emulsion pressure‐sensitive adhesives (PSAs) were synthesized by the copolymerization of n‐butyl acrylate with various levels of 2‐ethyl hexyl acrylate (2EHA) and a small constant amount of acrylic acid. The effect of varying the n‐butyl acrylate/2EHA monomer composition on the kinetic behavior of the polymerization and the characteristics of the copolymers prepared in a batch process were investigated. The results showed that increasing the amount of 2EHA in the monomer caused the polymerization rate and the glass‐transition temperature of the acrylic copolymers to decrease. Increasing the amount of 2EHA caused the gel content of the copolymers to decrease, reaching a minimum at 50 wt %; thereafter, the gel content increased at higher 2EHA levels. For the acrylic emulsion, the peel‐fracture energy of the PSAs decreased as the amount of 2EHA in the monomer was increased up to 50 wt %. At higher 2EHA levels, the peel‐fracture energy was relatively constant. Interestingly, a synergistic effect of increased shear resistance at 25 wt % 2EHA was observed without a significant trade‐off in terms of the peel and tack properties. This behavior was attributed to a good interconnection between the microgels and the free polymer chains inside the contacting particles in the adhesive film. Cooperation between various levels of 2EHA in the copolymer structure simultaneously changed the crosslink molecular weight (Mc) of the microgels and the entanglement molecular weight (Me) of the free chains in the adhesive network morphology. The adhesive performance of the PSAs was found to be correlated with their Mc/Me values as the 2EHA proportion was varied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
In this paper we analyze the adhesive properties of two kinds of adhesives, determined by a 90[ddot] peeling test on a PyrexTM substrate. Simultaneously, we observe the mechanisms of flow at the peeling front. An uncross-linked acrylic pressure-sensitive adhesive is used, whereas the second one, of the same class, is slightly cross-linked. The mechanisms of peeling are compared with the ones of our previous study (Benyahia et al [8]) and are found to be identical in the case of uncross-linked adhesives. On the other hand, we find new regimes of flow when the adhesive is cross-linked.

To investigate these differences further, we determine the rheometrical properties of the adhesives in dynamic shear tests and in uniaxial elongational experiments. Furthermore, surfaces are characterized.

A discussion of the peeling curves is finally presented, showing the combined effects of the rheological properties and the surface ones. Conditions for predicting the type of regimes and transitions are also investigated.  相似文献   

16.
Electrolytes were injected through holes in dye-sensitized solar cells (DSSCs), and the holes were subsequently sealed with UV-curable adhesives containing different types of acrylate monomers and different amounts of fluorosurfactants, which were found to affect the performance of the DSSCs during long-term stability tests. The efficiency (η) of the DSSCs' conversion of light to electricity is an important parameter. The corrosion potential (Ecorr) toward the liquid electrolyte and the adhesion strength of the UV-curable adhesives to fluorine-doped tin oxide (FTO) glass affected the efficiency of DSSCs during long-term thermal stability tests. The UV-curable adhesive containing 10.0 wt % of acrylic acid (AA) monomer and 3.0–4.0 wt % of fluorosurfactant, when used to seal DSSC devices, led to the best DSSC performance of η = 4.1% during a 45-day long-term thermal stability test. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47948.  相似文献   

17.
Stable emulsions of emulsifier/N‐methylpyrrolidone‐free crosslinkable waterborne polyurethane–acrylates (C‐WBPUAs) with various acrylic monomer contents (0, 10, 20, and 30 wt %) for footwear adhesive materials were successfully prepared in this study. The effects of the acrylic monomer content on the shelf stability, mean particle size, and viscosity of the C‐WBPUA emulsions; the tensile properties and dynamic mechanical thermal properties of the C‐WBPUA film samples; and the adhesive strengths between the upper (synthetic leather) and the sole (ethylene vinyl acetate rubber) in both the dry and wet states of the formulated adhesives (C‐WBPUA emulsion–thickener–hardener) were examined. The adhesive strengths of the formulated adhesives for footwear (leather–sole) in both the dry and wet states increased with increasing acrylic monomer content up to 20 wt %; after this, they almost levelled off. Thus, C‐WBPUA20 and C‐WBPUA30, where the number indicates the acrylic monomer content, can be recommended as high‐performance adhesive materials for footwear. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43758.  相似文献   

18.
Relationship between the miscibility of pressure‐sensitive adhesives (PSAs) acrylic copolymer/hydrogenated rosin systems and their performance (180° peel strength, probe tack, and holding power), which was measured over a wide range of time and temperature, were investigated. The miscible range of the blend system tended to become smaller as the molecular weight of the tackifier increased. In the case of miscible blend systems, the viscoelastic properties (such as the storage modulus and the loss modulus) shifted toward higher temperature or toward lower frequency and, at the same time, the pressure‐sensitive adhesive performance shifted toward the lower rate side as the Tg of the blend increased. In the case of acrylic copolymer/hydrogenated rosin acid systems, a somewhat unusual trend was observed in the relationship among the phase diagram, Tg, and the pressure‐sensitive adhesive performance. Tg of the blend was higher than that expected from Tgs of the pure components. This trend can be due to the presence of free carboxyl group in the tackifier resin. However, the phase diagram depended on the molecular weight of the tackifier. The pressure‐sensitive adhesive performance depended on the viscoelastic properties of the bulk phase. A few systems where a single Tg could be measured, despite the fact that two phases were observed microscopically, were found. The curve of the probe tack of this system shifted toward a lower rate side as the Tg increases. However, both the curve of the peel strength and the holding power of such system did not shift along the rate axis. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 651–663, 1999  相似文献   

19.
Two different monosaccharide acrylate monomers were designed and synthesized from glucose and galactose, and were then used to prepare transparent acrylic pressure sensitive adhesives (PSAs) comprised of semi-interpenetrated structured polymer networks. The effects of the monosaccharide architecture in the acrylate monomers on the adhesive performance of the acrylic PSAs were investigated. Prepared UV-curable acrylic PSA syrups were characterized and the optical properties of the acrylic PSAs were also examined. All of the acrylic PSAs exhibited high transparency in the visible wavelength region. With increasing monosaccharide acrylate concentration in the acrylic PSAs, adhesive performances such as the peel strength, cohesion strength, and probe tack were increased. However, there was no difference in their adhesive performances regardless of the different chemical structures of monosaccharide acrylate monomers.  相似文献   

20.
This study develops a facile approach to fabricate adhesives consists of epoxy and cost-effective graphene platelets (GnPs). Morphology, mechanical properties, electrical and thermal conductivity, and adhesive toughness of epoxy/GnP nanocomposite were investigated. Significant improvements in mechanical properties of epoxy/GnP nanocomposites were achieved at low GnP loading of merely 0.5?vol%; for example, Young’s modulus, fracture toughness (K1C) and energy release rate (G1C) increased by 71%, 133% and 190%, respectively compared to neat epoxy. Percolation threshold of electrical conductivity is recorded at 0.58?vol% and thermal conductivity of 2.13?W m?1 K?1 at 6?vol% showing 4 folds enhancements. The lap shear strength of epoxy/GnP nanocomposite adhesive improved from 10.7?MPa for neat epoxy to 13.57?MPa at 0.375?vol% GnPs. The concluded results are superior to other composites or adhesives at similar fractions of fillers such as single-walled carbon nanotubes, multi-walled carbon nanotubes or graphene oxide. The study promises that GnPs are ideal candidate to achieve multifunctional epoxy adhesives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号