首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper deals with the analysis of active constrained layer damping (ACLD) of geometrically nonlinear transient vibrations of skew laminated composite plates using skew or rectangular patches of the ACLD treatment. The constraining layer of the patch of the ACLD treatment is composed of the vertically/obliquely reinforced 1–3 piezoelectric composite material. The Golla–Hughes–McTavish method has been used to model the constrained viscoelastic layer of the ACLD treatment in the time domain. A coupled electromechanical nonlinear three dimensional finite element model of skew laminated thin composite plates integrated with the skew or rectangular patches of ACLD treatment has been derived. The performance of the patches is investigated for different configurations of their placements on the top surface of the skew substrate plates. The analysis reveals that the ACLD treatment significantly improves the active damping characteristics of the skew laminated composite plates over the passive damping for suppressing their geometrically nonlinear transient vibrations. It is found that even though the substrate laminated plates are skew, a rectangular patch of the ACLD treatment located at the centre of the top surface of the substrate should be used for optimum damping of geometrically nonlinear vibrations of skew laminated composite plates irrespective of their skew angles and boundary conditions. The effects of piezoelectric fiber orientation angle and the skew angles of the substrate plates on the control authority of the ACLD patches have been emphatically investigated.  相似文献   

2.
复合材料加筋板的动力分析   总被引:2,自引:1,他引:1       下载免费PDF全文
本文构造了九自由度三角形拟协调罚函数复合材料板单元与六自由度复合材料梁单元,考虑了剪切变形与转动惯量的影响。用这两种单元对复合材料加筋板的自由振动、阻尼特性和瞬态响应问题进行了研究,给出一些有益结果。   相似文献   

3.
低频时, 控制振动结构第一阶声辐射模态伴随系数可有效控制总声功率。通过分层有限元模型可以求解层合板的位移模式。对层合板的固有频率和动态响应进行了理论推导。结合声辐射模态理论, 研究了层合板铺设角度、 弹性模量比、 跨厚比以及阻尼比等结构参数对层合板结构第一阶声辐射模态伴随系数的影响。计算结果表明, 分层理论结合有限元方法可以较准确地计算层合板固有频率, 而且铺设角度和跨厚比对层合板结构声辐射模态影响较大。  相似文献   

4.
含分层损伤复合材料加筋层合板的动承载能力   总被引:4,自引:3,他引:1       下载免费PDF全文
采用有限元方法研究了含穿透分层损伤复合材料加筋层合板的动力响应和承载能力。根据复合材料层合板一阶剪切理论, 推导了复合材料层合板单元的刚度阵和质量阵列式;同时采用Adams 应变能法与Rayleigh阻尼模型相结合的方法, 构造了相应的阻尼阵列式;为了防止在低阶模态中分层处出现的上、下子板不合理的嵌入现象, 建立了含分层损伤复合材料加筋层合板动力分析中分层分析模型和虚拟界面联接模型。并采用Tsai提出的刚度退化准则和动力响应分析的精细积分法, 对在动荷载作用下含分层损伤复合材料加筋层合板结构进行了破坏和承载能力分析。通过典型算例分析, 分别讨论了外载频率、分层深度、筋的位置以及破坏过程中刚度退化对含损伤复合材料加筋层合板动力响应特征和承载能力的影响, 得到了一些具有理论和工程价值的结论。  相似文献   

5.
A super finite element method that exhibits coarse-mesh accuracy is used to predict the transient response of laminated composite plates and cylindrical shells subjected to non-penetrating impact by projectiles. The governing equations are based on the classical theories of thin laminated plates and shells taking into account the von Karman kinematics assumptions for moderately large deflections. A non-linear Hertzian-type contact law accounting for curvatures of the colliding bodies is adopted to calculate the impact force . The theoretical basis of the present finite element model is verified by analysing impact-loaded laminated composite plate and shell structures that have previously been studied through analytical or other numerical procedures. The predictive capability of the present numerical approach is successfully demonstrated through comparisons between experimentally-measured and computed force-time histories for impact of carbon fibre-reinforced plastic (CFRP) plates. The current computational model offers a relatively simple and efficient means of predicting the structural impact response of laminated composite plates and shells.  相似文献   

6.
层合阻尼结构各向异性设计之阻尼特性分析   总被引:17,自引:7,他引:10       下载免费PDF全文
将各向异性设计引入层合阻尼结构中,从理论上分析了各向异性层合阻尼结构的阻尼特性及其控制机理,从而验证了建立约束阻尼层合结构各向异性优化设计新体系的可行性。文中衡量结构阻尼减振效果的重要指标是结构系统的损耗因子,采用半无限简支板为例,对各种铺层形式作了大量的计算;并以最大损耗因子为目标函数,以铺层角度、频率、厚度等为约束条件进行结构优化设计。分析研究表明,该结构内部柔性层对阻尼的影响要比应力耦合对其影响大得多;在高于基本模式的固有频率下,能显著地提高损耗因子。  相似文献   

7.
A very simple displacement-based hexahedral 32-node element (denoted as DPH32), with over-integration in the thickness direction, is developed in this paper for static and dynamic analyses of laminated composite plates and shells. In contrast to higher-order or layer-wise higher-order plate and shell theories which are widely popularized in the current literature, the proposed method does not develop specific theories of plates and shells with postulated kinematic assumptions, but simply uses the theory of 3-D solid mechanics and the widely-available solid elements. Over-integration is used to evaluate the element stiffness matrices of laminated structures with an arbitrary number of laminae, while only one element is used in the thickness direction without increasing the number of degrees of freedom. A stress-recovery approach is used to compute the distribution of transverse stresses by considering the equations of 3D elasticity. Comprehensive numerical results are presented for static, free vibration, and transient analyses of different laminated plates and shells, which agree well with existing solutions in the published literature, or solutions of very-expensive 3D models by commercial FEM codes. It is clearly shown that the proposed methodology can accurately and efficiently predict the structural and dynamical behavior of laminated composite plates and shells in a very simple and cost-effective manner.  相似文献   

8.
基于Mindlin假定的复合材料层合板单元和层合梁单元,推导了复合材料加筋板的刚度阵和质量阵;采用Adams应变能法与Rayleigh阻尼模型相结合的方法,构造了相应的阻尼阵列式;建立了分层损伤特征的三板模型和表征基体微裂纹损伤的基体损伤模型;并推导了一种基于Hertz型非线性接触法则的虚拟联接单元模型,以避免在振动分析过程中在低阶模态中分层处出现的上、下子板间不合理的嵌入现象;在上述模型和理论基础上,采用精细积分法求解含损伤结构的动力响应。对典型数例进行参数讨论,表明在动载荷作用下,嵌入分层损伤以及在振动过程中诱发的基体微裂纹损伤的演化将明显地影响加筋层合板的动力特性。  相似文献   

9.
共固化粘弹性复合材料兼具结构承载和阻尼减振功能。针对传统的混合单元法在应用于粘弹性夹层复合材料结构阻尼性能分析时存在着前处理困难、计算规模大、精度低以及难以考虑正交各向异性铺层自身损耗能力的缺点,推导了一种基于Layerwise离散层理论的四节点四边形复合材料层合板单元,并利用直接复特征值解法建立了共固化粘弹性复合材料结构的阻尼性能分析方法。将该方法应用于不同的阻尼结构,分析结果与文献中已公开结果和混合单元法的计算结果进行了对比验证。结果表明,基于离散层理论的层合板单元具有计算精度高、前处理建模简单和计算规模小的优点,可有效应用于复杂共固化粘弹性复合材料结构的阻尼性能分析和设计。  相似文献   

10.
The work reported in this paper describes the development of a hybrid methodology for the prediction of damping properties of vibrating composite laminates; this method could also be applied to homogeneous materials. This hybrid methodology consists of experimental identification of damping, using vibration damping testing methods, and utilization of FEA. The experimentally identified damping property is that of specific damping capacity (SDC), a measure of damping during the 1st mode of resonant vibration of beams. The finite element approach utilizes the concept of Rayleigh damping, and in particular mass proportional damping for the modeling of the damped response of vibrating systems. It is shown that by using such a methodology, damping data can be extracted for cases where application of continuum mechanics analytical solutions cannot provide reliable information. Furthermore, the development of the finite element models is described. The association of damping properties with material reinforcement is highlighted. A series of continuous and woven, cross ply and quasi isotropic GFRP and CFRP coupons were vibrated. The FE damped response prediction was in very good agreement with laboratory observations.  相似文献   

11.
ABSTRACT

Nonlinear air blast response of basalt composite plates is analysed by using a generalized differential quadrature (GDQ) method, which requires less solution time and decreases the complexity compared to finite element method. A test environment that contains a shock tube is designed and set to experiment on the transient response of blast loaded laminated plates. Experimental and numerical results show a good agreement in terms of displacement, strain, and acceleration versus time. The responses of glass/epoxy, Kevlar/epoxy, and carbon/epoxy composite plates are also investigated by using GDQ method and the results are compared with the basalt/epoxy composite plate and discussed.  相似文献   

12.
The natural frequencies of isotropic and composite laminates are presented. The forced vibration analysis of laminated composite plates and shells subjected to arbitrary loading is investigated. In order to overcome membrane and shear locking phenomena, the assumed natural strain method is used. To develop a laminated shell element for free and forced vibration analysis, the equivalent constitutive equation that makes the computation of composite structures efficient was applied. The Mindlin-Reissner theory which allows the shear deformation and rotary inertia effect to be considered is adopted for development of nine-node assumed strain shell element. The present shell element offers significant advantages since it consistently uses the natural co-ordinate system. Results of the present theory show good agreement with the 3-D elasticity and analytical solutions. In addition the effect of damping is investigated on the forced vibration analysis of laminated composite plates and shells.  相似文献   

13.
This article deals with the active structural-acoustic control of thin laminated composite plates using vertically reinforced 1–3 piezoelectric fiber-reinforced composite (PFRC) material for constraining layer of active constrained layer damping (ACLD) treatment. A finite element model is developed for the laminated composite plates integrated with ACLD patches and coupled with acoustic cavity to describe the coupled structural-acoustic behavior of the plates enclosing the cavity. Both in-plane and out of plane actuation of the constraining layer of the ACLD treatment have been utilized for deriving the finite element model. The analysis revealed that the vertical actuation dominates over the in-plane actuation. The performance of PFRC layers of the patches has been investigated for active control of sound radiated from thin symmetric and antisymmetric cross-ply and antisymmetric angle-ply laminated composite plates into the acoustic cavity.  相似文献   

14.
Material characterization of laminated composite plates via static testing   总被引:3,自引:0,他引:3  
A minimization method for material characterization of laminated composite plates using static test results is presented. Mechanical responses such as strains and displacements are measured from the static tests of the laminated composite plates. The finite element method is used to analyse the deformation of the laminated composite plates. An error function is established to measure the differences between the experimental and theoretical mechanical responses of the laminated composite plates. The identification of the material elastic constants of the laminated composite plates is formulated as a constrained minimization problem in which the elastic constants are determined by making the error function a global minimum. A number of examples are given to illustrate the feasibility and applications of the proposed method.  相似文献   

15.
This paper deals with the active structural acoustic control of thin laminated composite plates using piezoelectric fiber-reinforced composite (PFRC) material for the constraining layer of active constrained layer damping (ACLD) treatment. A finite element model is developed for the laminated composite plates integrated with the patches of ACLD treatment to describe the coupled structural-acoustic behavior of the plates enclosing an acoustic cavity. The performance of the PFRC layers of the patches has been investigated for active control of sound radiated from thin symmetric and antisymmetric cross-ply and antisymmetric angle-ply laminated composite plates into the acoustic cavity. The significant effect of variation of piezoelectric fiber orientation in the PFRC layer on controlling the structure-borne sound radiated from thin laminated plates has been investigated to determine the fiber angle in the PFRC layer for which the structural-acoustic control authority of the patches becomes maximum.  相似文献   

16.
This paper deals with the analysis of active constrained layer damping (ACLD) of geometrically nonlinear vibrations of sandwich plate with orthotropic laminated composite faces separated by a flexible core. The constraining layer of the ACLD treatment is composed of the vertically/obliquely reinforced 1?C3 piezoelectric composites. The Golla?CHughes?CMcTavish method has been implemented to model the constrained viscoelastic layer of the ACLD treatment in time domain. The first-order shear deformation theory and the Von Kármán type nonlinear strain displacement relations are used for analyzing this coupled electro-elastic problem. A three dimensional finite element model of smart laminated composite sandwich plate integrated with ACLD patches has been developed to investigate the performance of these patches for controlling the geometrically nonlinear vibrations of the plates. The numerical results indicate that the ACLD patches significantly improve the damping characteristics of the sandwich plates with laminated cross-ply and angle-ply facings for suppressing their geometrically nonlinear vibrations. Particular emphasis has been placed on investigating the effect of the variation of piezoelectric fiber orientation angle on the performance of the ACLD treatment.  相似文献   

17.
Nonlinear transient behavior of fiber-metal laminated (FML) composite plates under non-ideal blast loads are investigated by both experimental and numerical techniques. In the experiments three plates with different aspect ratios are tested under blast loads and their response is also simulated and compared with both the developed mixed finite element method and the commercial software ANSYS. Furthermore parametric numerical analyses are conducted for nonlinear transient behavior of functionally graded (FGM) thin plates under blast loads with mixed FEM. In these parametric analyses the effect of aspect ratio, load distribution and impulse function in time domain are investigated. In the developed mixed FE formulation, the von Kármán plate theory is used. Nonlinear functional is developed using the Hellinger-Reissner principle and linearized with the incremental formulation. Dynamic analyses are carried using the Newmark method with the Newton-Raphson iterations. Condensation is not performed hence time derivative of internal forces are also calculated during the solutions. Damping is incorporated to the analysis in the sense of the Rayleigh damping. As a result of conducted analyses, there is a good and reliable agreement between the numerical and the experimental results. Moreover, the developed mixed FEM results are almost identical to the ANSYS results.  相似文献   

18.
This paper deals with the damping characteristics of symmetrically laminated plates with transverse shear deformation. First, the effect of laminate configuration on the damping characteristics is investigated for cantilevered laminated plates based on the Reissner–Mindlin’s first-order shear deformation theory. To examine the effect of laminate configuration, the concept of specific damping capacity is introduced and the damping characteristics are represented on the lamination parameter plane, where the damped stiffness invariants in transverse shear are newly proposed in this paper. Next, the optimal laminate configurations for the cantilevered laminated plates with maximal damping are determined taking into account the transverse shear effect by using differential evolution in which lamination parameters are used as intermediate design variables. The relation between the laminate configurations and the damping characteristics is discussed based on the concept of lamination parameters.  相似文献   

19.
工程结构中的复合材料层合板的几何参数往往具有随机性质.如何研究随机参数层合板的灵敏度,并对参数进行优化分析,这对正确估计结构设计的可靠性有着非常重要的意义.根据层合板的一阶剪切理论,采用样条有限元法,推导并建立了层合板的振动方程,刚度矩阵,质量矩阵,比例阻尼矩阵以及求解反对称层合板响应灵敏度的计算公式,在基于灵敏度分析的基础上,进行了复合材料层合板的基频分析和优化设计,并用网格法计算最佳铺层角.数值算例验证了算法的有效性.  相似文献   

20.
复合材料层合板力学性质分析及角铺设层优化设计   总被引:2,自引:0,他引:2  
基于Kirchhoff经典理论,用样条有限元法以三次B样条函数构成的样条基对反对称多层角铺设层合板的三个独立位移进行插值,推导了复合材料层合板刚度阵,质量阵列式,阻尼阵列式,并由Lagrange方程导出了层合板的动力学方程,通过瑞利一李兹法建立了特征方程。分析了层合板的固有频率及不同层数和不同约束条件下的基频变化等力学特性,在Kirchhoff假设的基础上,对层合板的非线性弯曲的力学特性进行了探讨。基于样条有限元法和遗传算法进行复合材料层合板的角铺设层的优化设计,数值算列验证了算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号