首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eleven laboratory lucerne silages, ten farm-scale lucerne silages and one maize silage were analysed for fermentation products to determine if chemical composition could explain differences in aerobic stability. Three of the farm-scale lucerne silages and the maize silage heated within 4 days of exposure to air whereas the other lucerne silages were stable for longer than 7 days even after inoculation with a destabilising yeast inoculum. The silages were analysed for lactic acid, volatile fatty acids (C1 to C6), succinic acid, ethanol, and 2,3-butanediol. The concentrations of these compounds in the unstable silages were not different from levels found in stable silages on either a dry matter basis or an undissociated water basis. However, unstable silages tended to be lower in 2,3-butanediol than other silages. The time until heating in these silages was simulated using a model of aerobic fungal growth in silage. This model considered the effects of yeast and mould numbers, pH, moisture content, and lactic and acetic acid concentrations on stability. Aerobic stability in three of the four unstable silages, with and without inoculation of destabilising yeasts, was reasonably predicted by the model. Stability in the other silages was consistently underpredicted by the model. These results indicate that the stability factor found in many lucerne silages is unlikely to be one of the principal products of silage fermentation.  相似文献   

2.
3.
4.
A study was conducted to determine the chemical composition and in situ nutrient ruminal degradability of three lucerne products. These were dehydrated pellets, sun‐cured pellets and cubes. Results of the chemical analysis showed that sun‐cured pellets had the highest (P < 0.05) neutral and acid detergent fibre as well as total carbohydrate levels, followed by cubes and dehydrated pellets respectively. Crude protein (CP) content was highest (P < 0.05) for dehydrated pellets (204.3 g kg?1), intermediate for sun‐cured pellets (160.0 g kg?1) and lowest for cubes (153.2 g kg?1). Intermediately degradable CP (buffer‐insoluble CP minus neutral detergent‐insoluble CP) was the main protein fraction in the three products and was higher (P < 0.05) in cubes than in dehydrated and sun‐cured pellets. Estimated net energy of lactation was highest (P < 0.05) for dehydrated pellets (5.9 MJ kg?1), intermediate for cubes (5.23 MJ kg?1) and lowest (P < 0.05) for sun‐cured pellets (5.15 MJ kg?1). Results of the in situ experiment indicated that dehydrated pellets had higher (P < 0.05) ruminal protein degradability than sun‐cured pellets and cubes. The estimated ruminal escape protein values for dehydrated pellets, sun‐cured pellets and cubes were 361, 420 and 498 g kg?1 CP respectively. It was concluded that differences in chemical composition and ruminal degradability among the three lucerne products were mainly due to differences in stage of maturity. It was also concluded that the dehydration process failed to increase the ruminal escape protein value of dehydrated pellets relative to sun‐cured pellets and cubes. © 2001 Society of Chemical Industry  相似文献   

5.
Using recently developed technology, balage is often stored in large (1.2 x 1.2 m) round bales that are wrapped in plastic film with an in-line wrapper. The aerobic stability of this fermented forage is important, particularly during winter months when it is fed to livestock or sold as a cash crop. Two types of forage, orchardgrass [Dactylis glomerata L.; 54.4% dry matter (DM)] and wheat (Triticum aestivum L.; 62.4% DM), were packaged in large round bales and wrapped with an in-line wrapper during May 2002. Twenty-one bales of each balage type were unwrapped and exposed to air on Dec. 10, 2002 for 0, 2, 4, 8, 16, 24, or 32 d (ambient temperature range = 0.6 to 19.4 degrees C) to evaluate aerobic stability. For both orchardgrass and wheat balage, final bale weight, concentration of DM, and pH were not affected by exposure time. Across both balage types, DM recoveries were > or = 97% for all bales, indicating that both balage types were very stable when exposed to air. For orchardgrass balage, exposure time had no effect on concentrations of NDF, ADF, hemicellulose, cellulose, or lignin, thereby indicating that little deterioration occurred. Similarly, no contrast relating any fiber component with exposure time was significant for wheat balage. Concentrations of crude protein (CP) were not affected by exposure time for wheat balage, but there was a tendency for exposed orchardgrass bales to have greater concentrations of CP than bales sampled on d 0. Exposure time had no effect on 48-h in situ digestibility of DM for wheat balage, but there was a tendency for a linear increase with exposure time for orchardgrass balage. However, the overall range (78.2 to 80.5%) over the 32-d exposure period was very narrow, and this response is probably of limited biological significance. Generally, concentrations of fermentation acids were low, primarily because of the high concentration of DM within these balages, and only minimal changes in these acids were observed over the exposure interval. These results suggest that the balage evaluated in this trial during winter conditions was very stable after exposure to air for up to 32 d. This should allow for considerable flexibility with respect to feeding, transport, and marketing of balage during winter months without significant aerobic deterioration.  相似文献   

6.
The effects of carbon dioxide level (100% versus 20% v in nitrogen) during ensiling on microbial populations and subsequent aerobic stability were studied in whole-crop maize silage. In five trials, fresh maize was chopped and ensiled in 10-litre silos with the two different gas atmospheres. Changes in populations of lactic acid bacteria, acetic acid bacteria, enterobacteria, Bacillus spores and moulds were only slightly affected by carbon dioxide level. In four of the five trials, fermentation products and pH were unaffected by treatment. Yeast counts were altered by carbon dioxide level but not consistently. The yeast population in maize silage made from one source was inhibited by high levels of carbon dioxide whereas the opposite occurred in the silages from two other sources. Aerobic stability was inversely related to yeast population. In two other experiments, maize silage taken from a bunker silo was re-ensiled in 700-litre and 10-litre silos, respectively, and the same two gas treatments were used. Carbon dioxide level had little effect on microbial numbers except yeast counts, which tended to be higher in the 20% v carbon dioxide environment. Little effect on aerobic stability due to treatment was noted in either experiment. High carbon dioxide levels do not appear to improve aerobic stability consistently.  相似文献   

7.
The occurrence of Bacillus and Paenibacillus spores in silage is of great concern to dairy producers because their spores can survive pasteurization and some strains are capable of subsequently germinating and growing under refrigerated conditions in pasteurized milk. The objectives of this study were to verify the role of aerobic deterioration of corn silage on the proliferation of Paenibacillus spores and to evaluate the efficacy of oxygen-barrier films used to cover silage during fermentation and storage to mitigate these undesirable bacterial outbreaks. The trial was carried out on whole-crop maize (Zea mays L.) inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium. A standard polyethylene film and a polyethylene-polyamide film with an enhanced oxygen barrier were used to produce the silage bags for this experiment. The silos were stored indoors at ambient temperature (18 to 22°C) and opened after 110 d. The silage was sampled after 0, 2, 5, 7, 9, and 14 d of aerobic exposure to quantify the growth of endospore-forming bacteria during the exposure of silages to air. Paenibacillus macerans (gram-positive, facultatively anaerobic bacteria) was able to develop during the aerobic exposure of corn silage. This species was present in the herbage at harvesting, together with clostridial spores, and survived ensiling fermentation; it constituted more than 60% of the anaerobic spore formers at silage opening. During silage spoilage, the spore concentration of P. macerans increased to values greater than 7.0 log10 cfu/g of silage. The use of different plastic films to seal silages affected the growth of P. macerans and the number of spores during aerobic exposure of silages. These results indicate that the number of Paenibacillus spores could greatly increase in silage after exposure to air, and that oxygen-barrier films could help to reduce the potential for silage contamination of this important group of milk spoilage microorganisms by delaying the onset of aerobic deterioration.  相似文献   

8.
Effects of 8 chemical and bacterial additives on the quality of corn silage   总被引:2,自引:0,他引:2  
This project aimed to evaluate the effects 8 additives on the fermentation, dry matter (DM) losses, nutritive value, and aerobic stability of corn silage. Corn forage harvested at 31% DM was chopped (10 mm) and treated with (1) deionized water (control); (2) Buchneri 500 (BUC; 1 × 105 cfu/g of Pediococcus pentosaceus 12455 and 4 × 105 cfu/g of Lactobacillus buchneri 40788; Lallemand Animal Nutrition, Milwaukee, WI); (3) sodium benzoate (BEN; 0.1% of fresh forage); (4) Silage Savor acid mixture (SAV: 0.1% of fresh forage; Kemin Industries Inc., Des Moines, IA); (5) 1 × 106 cfu/g of Acetobacter pasteurianus-ATCC 9323; (6) 1 × 106 cfu/g of Gluconobacter oxydans-ATCC 621; (7) Ecosyl 200T (1 × 105 cfu/g of Lactobacillus plantarum MTD/1; Ecosyl Products Inc., Byron, IL); (8) Silo-King WS (1.5 × 105 cfu/g of L. plantarum, P. pentosaceus and Enterococcus faecium; Agri-King, Fulton, IL); and (9) Biomax 5 (BIO; 1 × 105 cfu/g of L. plantarum PA-28 and K-270; Chr. Hansen Animal Health and Nutrition, Milwaukee, WI). Treated forage was ensiled in quadruplicate in mini silos at a density of 172 kg of DM/m3 for 3 and 120 d. After 3 d of ensiling, the pH of all silages was below 4 but ethanol concentrations were least in BEN silage (2.03 vs. 3.24% DM) and lactic acid was greatest in SAV silage (2.97 vs. 2.51% DM). Among 120-d silages, additives did not affect DM recovery (mean = 89.8% ± 2.27) or in vitro DM digestibility (mean = 71.5% ± 0.63). The SAV silage had greater ammonia-N (0.85 g/kg of DM) and butyric acid (0.22 vs. 0.0% DM) than other treatments. In contrast, BEN and Silo-King silages had the least ammonia-N concentration and had no butyric acid. The BEN and A. pasteurianus silages had the lowest pH (3.69) and BEN silage had the least ethanol (1.04% DM) and ammonia nitrogen (0.64 g/kg DM) concentrations, suggesting that fermentation was more extensive and protein degradation was less in BEN silages. The BUC and BIO silages had greater acetic acid concentrations than control silages (3.19 and 3.19 vs. 2.78% DM), but yeast counts did not differ. Aerobic stability was increased by 64% by BUC (44.30 h) and by 35% by BEN (36.49 h), but other silages had similar values (27.0 ± 1.13 h).  相似文献   

9.
Wet brewers grains were stored as a total mixed ration (TMR) in laboratory silos with lucerne hay, cracked maize, sugar beet pulp, soya bean meal and molasses at 5:1:1:1:1:1 on fresh weight basis. The TMR mixture was inoculated with or without Lactobacillus casei or Lactobacillus buchneri to obtain silages with differing fermentation and stability after exposure to air. In the first experiment, ensiling was stopped at 10, 20 and 60 days, and the stability was tested for the following 7 days. Ethanol and lactic acid were the main products in untreated TMR silage, while addition of L. casei and L. buchneri increased lactic and acetic acid, respectively. No silages deteriorated in the presence of air over 7 days, regardless of inoculation, ensiling period and the level of yeasts determined at unloading. In the second experiment, silos were opened at 14 days and then subjected to aerobic stability test for 14 days. Resistance to deterioration was sustained in the untreated control, even with a high population (>104 cfu g?1) of yeasts throughout the 14‐day test. Spoilage was found in L. casei‐treated silage at about 5 days, while increase of yeasts preceded the distinct heating (degradation). In L. buchneri‐treated silage, no yeasts were detected at unloading or after exposure to air. These results suggest that substantial stability can be expected in TMR silage with or without inoculation of lactic acid bacteria. This property is not associated with the counts of yeasts at loading and the characteristics of silage such as alcoholic and lactic acid fermentation. Copyright © 2007 Society of Chemical Industry  相似文献   

10.
The incorporation of (a) sorbic acid (0.18 and 0.90 g kg?1, fresh weight basis) and potassium sorbate (0.90 g kg?1) with chopped lucerne, and (b) sorbic acid (0.90 g kg?1) and potassium sorbate (0.90 g kg?1) with chopped maize (whole-plant) at the time of ensiling, led to a reduction in the surface spoilage associated with the ensilage of these two forages. Use of sorbic acid (0.90 g kg?1) and potassium sorbate (0.90 g kg?1) led to (a) a reduction of volatile nitrogen (VN), higher levels of residual water-soluble carbohydrates (WSC) in lucerne silage and more aerobically stable lucerne silage and (b) a reduction in weight loss, population of yeasts and moulds, and VN, higher levels of WSC in maize silage and more aerobically stable maize silage when compared to the untreated forages or forages treated with sorbic acid and potssium sorbate at 0.045 and 0.18 g kg?1 (fresh weight basis), respectively.  相似文献   

11.
《Journal of dairy science》2021,104(10):10828-10840
There is an increasing recognition throughout the world that many of the feeding problems of dairy herds are linked to the presence of aerobically deteriorated parts on a silo face, causing farmers to pose questions on what amount of silage should be removed daily to feed their animals. Since an adequate feed-out rate helps to prevent silage spoilage, a simple tool is needed to manage the aerobic deterioration of corn silages during feed-out. The aims of this study were to develop an unloading rate index, which we have called the mass feed-out rate (MFR), expressed in kilograms of fresh matter silage unloaded daily per square meter of silo face, to better predict the aerobic deterioration of silage and to offer management solutions to help prevent spoilage, through a survey on 97 commercial dairy farms in Italy and Brazil. Silages were sampled and analyzed for their main microbial, fermentative, and nutritional characteristics, whereas silage temperatures were measured in the core and peripheral areas of the silo working face. Moreover, a detailed questionnaire on silo management and silage utilization was administered to the farmers during each farm visit. The size and silage density of the silos presented a wide variability in the 2 countries, thus indicating that different management practices were adopted during corn harvesting, silo filling, and silage compaction. The differences between pH and temperature in the peripheral areas and in the core of the silage (dpH and dT, respectively) were tested as a single indicator to identify any aerobic deteriorated areas on the silo face, associated with the yeast and mold counts. Both indicators correctly identified aerobic deterioration in 86.6% and 93.8% of the studied silos, respectively. The lactic acid and ethanol increased as the MFR increased, whereas the starch, dT, and the yeast and mold counts decreased with increasing MFR. A daily removal rate of over 250 kg of silage/m2 markedly reduced the risk of spoilage in corn silages at a farm level in both temperate and tropical environments. The new MFR index can substitute for the commonly used linear feed-out rate as it includes the silage density and can be obtained from 1 single recording.  相似文献   

12.
The economic damage that results from aerobic deterioration of silage is a significant problem for farm profitability and feed quality. This paper quantifies the dry matter (DM) and nutritional losses that occur during the exposure of corn and sorghum silages to air over 14 d and assesses the possibility of enhancing the aerobic stability of silages through inoculation with lactic acid bacteria (LAB). The trial was carried out in Northern Italy on corn (50% milk line) and grain sorghum (early dough stage) silages. The crops were ensiled in 30-L jars, without a LAB inoculant (C), with a Lactobacillus plantarum inoculum (LP), and with a Lactobacillus buchneri inoculum (LB; theoretical rate of 1 × 106 cfu/g of fresh forage). The pre-ensiled material, the silage at silo opening, and the aerobically exposed silage were analyzed for DM content, fermentative profiles, yeast and mold count, starch, crude protein, ash, fiber components, 24-h and 48-h DM digestibility and neutral detergent fiber (NDF) degradability. The yield and nutrient analysis data of the corn and sorghum silages were used as input for Milk2006 to estimate the total digestible nutrients, net energy of lactation, and milk production per Mg of DM. The DM fermentation and respiration losses were also calculated. The inocula influenced the in vitro NDF digestibility at 24 h, the net energy for lactation (NEL), and the predicted milk yield per megagram of DM, whereas the length of time of air exposure influenced DM digestibility at 24 and 48 h, the NEL, and the predicted milk yield per megagram of DM in the corn silages. The inocula only influenced the milk yield per megagram of DM and the air exposure affected the DM digestibility at 24 h, the NEL, and the milk yield per megagram of DM in the sorghum silages. The milk yield, after 14 d of air exposure, decreased to 1,442, 1,418, and 1,277 kg/Mg of DM for C, LB, and LP corn silages, respectively, compared with an average value of 1,568 kg of silage at opening. In the sorghum silages, the milk yield, after 14 d of air exposure, decreased to 1,226, 1,278, and 1,250 kg/Mg of DM for C, LB, and LP, respectively. When the estimated milk yield per megagram of harvested DM of corn and sorghum silage were related to mold count, it was shown that the loss of potential milk production occurred when the mold count exceeded 4 log cfu/g of silage, and it was almost halved when the mold count reached values greater than 8 log cfu/g of silage. Inoculation with L. buchneri, at a rate of 1 × 106 cfu/g of fresh forage, enhanced the stability of the silage after exposure to air, and, consequently, contributed to maintaining the nutritional value of the harvested forage over time, for air exposure up to 7 d.  相似文献   

13.
The meat quality of 42, 8 month-old cross-bred wether lambs that had been grazed on either predominantly saltbush (Atriplex nummularia) and supplemented with pasture hay (n=14) or oat grain (n=14) for 68 days was compared to lambs grazed predominantly on lucerne (Medicago sativa; n=14). The lambs used in the study ranged in un-fasted liveweight from 44.5 to 63.6kg pre-slaughter. There was no significant (p>0.05) difference between the treatments for liveweight, but there was a significant (p<0.05) treatment effect on hot carcass weight with those from the saltbush/hay group (SH) being lighter than those from the lucerne group. When the carcass measures of fatness or m. longissimus thoracis et lumborum area were adjusted to a common carcass weight of 22.4kg there was no difference between groups. There were no significant differences (p>0.05) between groups for pH or colour values (where L* indicates relative lightness, a* indicates relative redness and b* indicates relative yellowness). There was no significant difference (p>0.05) between groups for b(2)* values of subcutaneous fat. Treatment had a significant effect on aroma strength (p<0.05), samples from lambs in the SH group (n=10) and those in saltbush/grain (SG) group (n=10) having a stronger aroma than those from lambs grazed on lucerne (L; n=10). No treatment effect for liking of aroma was found. Flavour strength was not significantly (p>0.05) stronger for samples from groups SH and SG than for samples from group L. There was no effect of treatment on tenderness or juiciness and overall panellists ranked the samples similarly for acceptability. Finishing lambs on saltbush and either supplemented with hay or grain as used in this experiment did not present any apparent meat quality problems compared to lucerne fed lambs.  相似文献   

14.
We evaluated the effectiveness of an additive comprising sodium benzoate, potassium sorbate, and sodium nitrite (SSL) as active ingredients for its ability to improve the aerobic stability of corn silages made in North America. In experiment 1, treatment with SSL (1.5 and 2.0 L/t) on whole-plant corn (WPC) was compared with treatment with an additive containing buffered propionic acid and citric acid (BPA; 2 L/t) on corn harvested at 32 and 38% dry matter and ensiled for 120 d. Silage treated with BPA was higher in ammonia-N and propionic acid relative to other treatments. Treatments with all of the additives had numerically, but not statistically, fewer yeasts compared with untreated silage. Both application rates of SSL resulted in lower concentrations of ethanol compared with untreated and BPA silages. Treatment with BPA improved the aerobic stability of silages compared with untreated silage, but the effect from SSL was markedly greater. In experiment 2, WPC was untreated or treated with 2 or 3 L of SSL/t or a microbial inoculant containing Enterococcus faecium M74, Lactobacillus plantarum CH6072, and Lactobacillus buchneri LN1819 (final total lactic acid bacteria application rate of 150,000 cfu/g of fresh forage). Silages were air stressed for 24 h at 28 and 42 d of storage and ensiled for 49 d before opening. Inoculation had no effect on acid end products, ethanol, number of yeasts, or aerobic stability compared with other treatments. Treatment with SSL decreased the amount of ethanol, had no effect on number of yeasts, and improved aerobic stability in a dose-dependent manner compared with other treatments. In experiment 3, WPC was untreated or treated with 2 L of SSL/t and ensiled for 5, 15, and 30 d. Treatment with SSL resulted in silage with fewer yeasts and lower concentrations of ethanol after all times of ensiling compared with untreated silage. In addition, SSL improved aerobic stability after each period of ensiling, but the effect was more at 15 and 30 d compared with 5 d of storage. Treating WPC with SSL can improve the aerobic stability of corn silage made in North America, and the effect can be observed as soon as 5 d after ensiling.  相似文献   

15.
Germination and growth of spores of butyric acid bacteria (BAB) may cause severe defects in semihard cheeses. Silage is the main source of BAB spores in cheese milk. The objectives of the study were to determine the significance of grass silages and corn silages as sources of BAB spores and to investigate the relationships between high concentrations of BAB spores in corn silage and aerobic deterioration. In the first survey, samples were taken from various locations in silos containing grass and corn silages and from mixed silages in the ration offered to the cows on 21 farms. We demonstrated that the quantity of BAB spores consumed by cows was determined by a small fraction of silage with a high concentration of spores (above 5 log10 BAB/g). High concentrations were most often found in corn silage within areas with visible molds (69% of the samples). Areas with visible molds in grass silage and surface layers of corn silage contained, respectively, 21 and 19% of the cases of concentrations above 5 log10 BAB spores/g. Based on these results, we concluded that currently in the Netherlands, corn silage is a more important source of BAB than is grass silage. In a second survey, 8 corn silages were divided into 16 sections and each section was studied in detail. High concentrations of BAB spores were found in only the top 50 cm of these 8 silages. Elevated concentrations of BAB spores were associated with different signs of aerobic deterioration. In 13% of the sections in corn silage with more than 5 log10 yeasts and molds/g, more than 5 log10 BAB spores/g were found. Sections with a temperature of more than 5°C above ambient temperature contained, in 21% of the cases, more than 5 log10 BAB spores/g. Concentrations above 5 log10 BAB spores/g were measured in 50% of the sections with a pH above 4.4. All sections with a pH above 4.4 also showed a temperature that was more than 5°C above ambient temperature and a concentration of yeasts and molds above 5 log10 cfu/g. Based on these results, we postulated that high concentrations of BAB spores in corn silage are the result of oxygen penetration into the silage, resulting in aerobic deterioration and the formation of anaerobic niches with an increased pH just below the surface. Growth of BAB in these anaerobic niches with an increased pH caused the locally high concentrations of BAB in corn silage.  相似文献   

16.
BACKGROUND: High aerobic stability can be expected when wet brewers' grains are stored as a total mixed ration (TMR) silage. To understand the factors affecting the stability, the effects of ration formulation, air infiltration and storage period were studied. RESULTS: A TMR containing wet brewers' grains, hay, maize, wheat bran, beet pulp and molasses was ensiled in laboratory silos for 14 and 56 days. The effects of hay species (lucerne or sudangrass) and air infiltration (Exp. 1) and of excluding one, two or three items from the six ingredients (Exp. 2) were examined. Ethanol was the main fermentation product in all TMR silages in this study. Aerobic deterioration occurred in 14 day silages prepared with sudangrass hay along with air infiltration (Exp. 1), and with the simplest recipe where three items (hay, maize and wheat bran) were excluded (Exp. 2). No deterioration occurred in 56 day silages regardless of ration formulation and air infiltration. Yeasts receded in 56 day silages, except with the simplest recipe, to the 102 cfu g?1 level and remained undetectable in the presence of air (Exp. 2). CONCLUSION: TMR silage can resist aerobic deterioration provided that a sufficient ensiling period has elapsed. Silages stored for only a few weeks may be susceptible to deterioration when air is infiltrated or where fewer ingredients are used in the TMR mixture. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
Two experiments were conducted to study the effects of wilting and inoculating Lactobacillus casei or Lactobacillus buchneri on the fermentation and aerobic stability of grass silages. Chopped Italian ryegrass (IR) and Festulolium (FE) were ensiled with or without wilting and added L casei (>106 cfu g?1 fresh matter (FM)) or L buchneri (>106 cfu g?1 FM). Silos were opened after 120 days and microbial counts, fermentation products and aerobic stability were determined. Addition of L casei increased lactic acid and decreased acetic acid and dry matter loss regardless of wilting and forage species. Inoculation of L buchneri decreased lactic acid and increased acetic acid and 1,2‐propanediol, while the effects appeared greater in direct‐cut than in wilted grass silages. Although 1,2‐propanediol accumulated in FE silage, the diol was degraded further to propionic acid and 1‐propanol in IR silage. The activity of 1,2‐propanediol degradation was lowered when IR was wilted prior to ensiling; 1,2‐propanediol remained and the production of propionic acid and 1‐propanol was less than one‐third of that in direct‐cut silage. Regardless of forage species, addition of L buchneri increased dry matter loss compared with the untreated control, whereas the loss was not significant in wilted silages. Ammonia production was increased by L buchneri in direct‐cut but not in wilted silages. No heating was observed with or without inoculation in direct‐cut IR silage after exposure to air. Other silages were deteriorated when L buchneri was not inoculated, while the spoilage was accelerated when L casei was added to FE. Copyright © 2005 Society of Chemical Industry  相似文献   

18.
19.
Chopped barley forage was ensiled untreated or treated with several doses (1 x 10(5) to 1 x 10(6) cfu/g of fresh forage) of Lactobacillus buchneri 40788 in laboratory silos and untreated or treated (4 x 10(5) cfu/g) in a farm silo. Silage from the farm silos was fed to lactating cows. In the laboratory silo, the effects of inoculation on fermentation and aerobic stability were also compared to silage treated with a commercial inoculant and a buffered propionic acid additive. Inoculation with L. buchneri 40788 decreased the final concentrations of lactic acid but increased concentrations of acetic acid and ethanol in silage from laboratory and farm silos. Silages stored in laboratory silos did not heat after exposure to air for 7 d and were then mixed with alfalfa silage and a concentrate to form total mixed rations (TMR) that were further exposed to air. The TMR containing silages treated with L. buchneri 40788 or a buffered propionic-acid-based additive took longer to heat and spoil than the TMR containing untreated silage or silagetreated with the commercial inoculant. Silage stored in a farm silo and treated with L. buchneri 40788 had fewer yeasts and molds than did untreated silage. Aerobic stability was greater in treated silage alone and in a TMR containing treated silage. Dry matter intake (18.6 kg/d), milk production (25.7 kg/d), and milk composition did not differ between cows fed a TMR containinguntreated or treated silage. These findings show that L. buchneri can improve the aerobic stability of barley silage in laboratory and farm silos and that feeding treated silage had no negative effect on intake or performance.  相似文献   

20.
Whole-plant corn was harvested at 33 (normal) and 41% (moderately high) dry matter (DM) and ensiled in quadruplicate 20-L laboratory silos to investigate the effects of Lactobacillus buchneri 40788 (LB) or L. plantarum MTD-1 (LP) alone, or in combination, on the fermentation and aerobic stability of the resulting silage. Aerobic stability was defined as the amount of time after exposure to air for the silage temperature to reach 2°C above ambient temperature. The chopped forage was used in a 2 × 2 × 2 factorial arrangement of treatments: normal and moderately high DM contents, LB at 0 (untreated) or 4 × 105 cfu/g of fresh forage, and LP at 0 or 1 × 105 cfu/g. After 240 d of ensiling, corn silage harvested at the moderately high DM had higher pH, higher concentrations of ethanol, and more yeasts compared with the silage ensiled at the normal DM content. Inoculation with LB did not affect the concentration of lactic acid in silages with a moderately high DM, but decreased the concentration of lactic acid in the silage with normal DM. Higher concentrations of acetic acid were found in the silage treated with LB compared with those not treated with this organism. Inoculation with LP increased the concentration of lactic acid only in the silage with the normal DM content. The concentration of acetic acid was lower in silage treated with LP with a moderately high DM content, but greater in the silage treated with LP with the normal DM content when compared with silages without this inoculant. Appreciable amounts of 1,2-propanediol (average 1.65%, DM basis) were found in all silages treated with LB regardless of the DM content. The addition of L. buchneri increased the concentration of NH3-N in silages but the addition of L. plantarum decreased it. Aerobic stability was improved in all silages treated with LB, with greater aerobic stability occurring in the silage with moderately high DM compared with silage with normal DM content. Inoculation with LP had no effect on aerobic stability. There were no interactions between L. buchneri and L. plantarum for most fermentation products or aerobic stability of the silages. This study showed that inoculating whole-plant corn with L. buchneri 40788 or L. plantarum MTD-1 has different beneficial effects on the resulting silage. There appear to be no major interactions between these organisms when added together to forage. Thus, there is potential to add both organisms simultaneously to improve the fermentation and aerobic stability of corn silage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号