首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corrosion tests of austenitic stainless steels in the system acetic acid/acetic anhydride The corrosion behaviour of the austenitic stainless steels X6 CrNiMoTi 17 12 2 (mat.no. 1.4571, AISI 316 Ti) and X2 NiCrMo-Cu 25 20 5 (mat.no. 1.4539, alloy 904 L) was investigated by immersion tests of welded specimens in acetic acid and acetic anhydride and in mixtures thereof, as well. The tests were carried out at 80°C and at the boiling point of the test solutions. The test equipment was either open to the atmosphere or the mixtures were deaerated with nitrogen. The tests show that in the presence of air the mixtures are more corrosive than the neat media. At 80°C in aerated solutions only alloy 904 L (mat.no. 1.4539) performed well, except in a mixture of 70% acetic acid and 30% acetic anhydride. At the boiling point of the test solutions the corrosive attack on both stainless steels increases considerably; the corrosion rates are in the range of 1 mm/a (1.4571) and 0.6 mm/a (1.4539). Deaeration with nitrogen decreases the corrosivity of the solutions to the stainless steels. Electrochemical tests show the detrimental influence of acetic anhydride to the passivation process of stainless steels tested in glacial acetic acid.  相似文献   

2.
Galvanic series of AISI 304, 316, 316L, and 316Ti austenitic stainless steels, AISI 410 and 420 martensitic stainless steels, 63Cu37Zn brass, Cu, Al, and AlMg1 were established for 10% (wt.) hydrochloric, phosphoric, sulphamic, sulphuric, nitric, citric, acetic, and methanesulphonic (MSA) acids used as cleaners in order to predict galvanic corrosion when coupling these materials. It was found that each acid has a distinctive order of metallic materials in a galvanic series. The largest corrosion potential difference in all acids exists between Al-based materials and stainless steels, as well as Cu-based materials indicating the use of Al-based materials as sacrificial electrodes.  相似文献   

3.
Surface treatments of high alloy 6 Mo stainless steel and nickel alloy weldments High alloy stainless steels (6% Mo) and a high nickel alloy (alloy 625) weldment have been tested in order to answer the question whether post-treatment of the weldment has an effect on the corrosion resistance, especially on pitting corrosion. Therefore, the critical pitting temperature of weldments was tested in acidic chloride solution (standard tests). As a result grinding with rough emery paper as well as sand blasting lowers the localized corrosion resistance in the weldment area, while pickling has a positive effect, especially after blasting. Pickling can be done either by a solution of nitric + hydrofluoric acid or by a commercial pickling paste. In any event pickling is recommended as a final surface treatment for high alloy stainless steels and nickel alloys, especially in case of prevailing highly corrosive conditions such as pitting and crevice corrosion.  相似文献   

4.
Surface treatments and their influence on the corrosion resistance of stainless steel The surface treatments pickling, grinding and glass beading were investigated on several stainless austenitic steels and one ferritic/austenitic steel. The different surface treatments were used on two different prepared types of samples:
  • 1 high temperature oxidized samples
  • 2 welded samples
The quality of the surface treatments has been examined by means of potentiodynamic, ferric chloride, dip and spray tests made in series. The corrosion resistance was highly depending on the used treatments. All in all the examination showed that a higher corrosion resistance was achieved by pickling than by grinding or glass beading.  相似文献   

5.
Corrosion of austenitic stainless steels in (condensing) nitric acid containing chlorides The corrosion parameters involved in the behaviour of austenitic stainless steels and nickelbase alloys in chloride containing nitric acid are being stated. Investigation of the corrosion resistance of the austenitic stainless steel 1.4306, ESR grade for application in nitric acid, in nitric acid condensates containing small amounts of chlorides. The condensates were formed from boiling nitric acids of molarities 6 to 10 containing 15 to 45 mg chlorides/1. The calculated corrosion rates of < 1 μm/y can be considered rather small. Especially in cases of insufficient wetting of the heat exchanger surfaces, however, local roughening and pitting corrosion is to be expected, mostly under rust-colored, chloride-containing deposits. The intensity of pitting corrosion increases with increasing chloride contents of the nitric acid solutions that evaporate. The sealing surfaces consisting of steel 1.4306 and PTFE did not exhibit any crevice corrosion. Nitric acid grade ESR-1.4306 definitely does not suffice requirements as described in this paper. It is suggested to use stainless steels which exhibit an improved resistance against chlorides and, at the same time, a high resistance against nitric acid attack. The following steel grades may be considered: X 1 CrNi 25 21 (Mat. No. 1.4335), X 2 CrNiMoN 25 22 2 (Mat. No. 1.4466) and/or X 1 NiCrMoCuN 31 27 4 (Mat. No. 1.4563).  相似文献   

6.
Corrosion resistance of austenitic and ferritic stainless alloys in 20 to 75% nitric acid as a function of temperature and concentration A series of stainless austenitic and ferritic materials was exposed for 100 days to boiling nitric acid which contained no corrosion products; the corrosion rates and depths of the grain boundary attack were observed. Provided the structure is precipitation-free, the following are suitable for long-term exposure; the austenitic steels X 2 CrNi 1912, X1 CrNi 25 21, X1 CrNiMoN 25 222 and X1 NiCrMoCu31274, the practically Mo-free and Cu-free development steel X1 NiCr31 27, and the highly Mo-alloyed variant X1 NiCrMoCu 31275. In the case of alloy NiCr21 Mo it is advisable to limit the concentration and/or the temperature of the nitric acid. The “superferrite” X1CrNiMoNb2842, the Japanese steel X1 CrNiNb 30 2 and the austenitic steels X2 CrNiMoN 1713 3 and X1 CrNiMoN 25 22 2 in the version with high nickel content are unsuitable. Thus, as an alloying element, molybdenum does not always impair the resistance of stainless steels to nitric acid. The decisive factor affecting the corrosion rates is the chromium content of the material. The temperature-dependent function of the corrosion in azeotropic nitric acid conforms to Arrhenius relations. The concentration-dependent function of the corrosion in 20 to 75 (80)% nitric acid can be described by a hyperbolic equation. An exception is formed by X1 CrNiSi 1815; here the corrosion rate increases with the concentration of the acid until the azeotropic point is reached; then, owing to the formation of a surface film, it falls until the acid becomes highly concentrated.  相似文献   

7.
The meaning of the oxalic acid etch test for testing the corrosion resistance of stainless steels In the oxalic acid etch test according to ASTM A 262 practice A, precipitations of phases rich in chromium and molybdenum which can occur in stainless steels, are preferentially dissoved. The behaviour of such phases in the oxalic acid etch test was investigated taking precipitations of carbide M23C6, s?-phase, χ-phase and Laves-phase in stainless steels AISI 304 L and 316 L as examples. The chemical composition of these was evaluated with a scanning transmission electron microscope (STEM) by EDS. With coarser precipitations, it was possible to support this analytical method by EDS of metallographic cross sections in a scanning electron microscope (SEM). In oxalic acid, critical threshold potentials exist above which the above mentioned phases are preferably attacked, furthermore critical pH values, below which no selective attack of the precipitated carbides and intermetallic phases occurs. The numerical values of the threshold potentials as well as the critical pH values were evaluated. When testing stainless steels in the oxalic acid etch test, the steel specimens are polarized to a highly positive potential in the very trans passive range. In this potential range the corrosion rate of stainless steels increases with increasing chromium content, while in the active and passive range the corrosion rate decreases with increasing chromium content. Other than the nitric-hydrofluoric acid test, the copper-copper sulfate-sulfuric acid test, and the ferric sulfate-sulfuric acid test, the oxalic acid etch test does therefore not indicate any chromium depletion. Hence, an intergranular attack also occurs when precipitations of carbides rich in chromium are present at the grain boundaries of austenitic stainless steels with the carbides being precipitated without any chromium depletion of the areas adjacent to the grain boundaries. Sensitized austenitic stainless steels which are susceptible to intergranular corrosion due to the precipitation of chromium rich carbides and chromium depletion of the areas adjacent to the grain boundaries, can suffer intergranular SCC in high temperature aqueous environments when additionally critical conditions with respect to the mechanical stress level and the oxygen concentration in the environment are given. For the detection of sensitized microstructures, the oxalic acid etch test must be valued critically due to the dependence of the corrosion rate on the chromium content mentioned above, and is obviously by far less suited than the conventional tests for establishing resistance to intergranular corrosion in sulfuric acid-copper sulfate solutions with additions of metallic copper (Strauß test, severe Strauß test).  相似文献   

8.
Corrosion behaviour of high chromium ferritic stainless steels Ferritic steels developed for seawater desalination and containing 20 to 28% chromium, up to 5% Mo and additions of nickel and copper have been tested with respect to their corrosion behaviour, in particular in chloride containing media. The materials in the sensibilized state were tested for inter-crystalline corrosion susceptibility in the Strauß-, Streicher-, nitric acid hydrofluoric acid- and Huey-Tests. No intercrystalline corrosion was encountered in the case of the steels with 28% Cr and 2% Mo. The resistance to pitting was assessed on the basis of rupture potentials determined by potentiokinetic tests. The resistance of the steels with 20% Cr and 5% Mo or 28% Cr and 2% Mo is superior to that of the molybdenum containing austenitic types. Addition of nickel yields a significant increase in crevice corrosion resistance; the same applies to resistance in sulfuric acid. In boiling seawater all the materials tested are resistant to stress corrosion cracking. No sign of any type of corrosion was found on nickel containing steels after about 6000 hours exposure to boiling 50% seawater brine even under salt deposits.  相似文献   

9.
Stainless steels have been used extensively in many sectors such as medical and household appliances as well as construction. This has been primarily due to their high resistance to corrosion attacks, reasonable cost, and excellent mechanical properties. However, when placed in corrosive media stainless steel is susceptible to localized corrosion attacks, especially when placed in chloride solutions. The paper explores the issue of corrosion liability of austenitic (AISI 316) and duplex (UNS S32205) stainless steels in et aconditions of seawater environment as well as under the influence of an inhibitor in the same environmental conditions. The behavior of stainless steels was examined via electrochemical testing relying on DC and AC techniques, optical metallographic analysis, scanning electron microscopy, and X‐ray diffraction analysis. Duplex stainless steel showed better resistance to localized corrosion but a higher tendency toward general corrosion in all examined solutions. Cerium chloride in a chloride solution showed inhibiting properties for both the AISI 316 and the UNS S32205.  相似文献   

10.
Corrosion tests of selected metallic materials in the system acetic acid/acetic anhydride The corrosion behaviour of the ferritic austenitic stainless steels X2 CrNiMoN 22 5 (UNS S31803) and X2 CrNiMoN 25 7 4 (UNS S32750), the nickel base alloy NiMo16Cr16Ti (alloy C-4) and the titanium grades Ti2 (Grade 2) and Ti2Pd (Grade 7) was investigated by immersion tests in boiling mixtures of acetic acid and acetic anhydride in the presence of air. All materials tested were corrosion resistant in acetic acid and acetic anhydride but were corroded rapidly by the mixtures with a corrosion loss up to 1 mm/a, except the nickel base alloy (alloy C-4). It was corrosion resistant in all solutions with a corrosion loss not exceeding 0.01 mm/a. Electrochemical tests show that all materials tested exhibit stable passivity in glacial acetic acid and active corrosion in the presence of 10% acetic anhydride.  相似文献   

11.
Within the framework of a research aimed at characterizing the behaviour of new materials to pitting and crevice corrosion, an investigation has been made, using electrochemical techniques, of the following materials: ELI ferritic stainless steels (18 Cr-2 Mo-Ti; 21 Cr-3 Mo-Ti; 26 Cr-1 Mo); high chromium duplex stainless steel (Z 5 CNDU 21-08) and high chromium-nickel austenitic stainless steel (Z 2 CNDU 25-20); commercial austenitic stainless steels (AISI 304 L and 316 L) and laboratory heats of austenitic stainless steels with low contents of interstitials (LTM/18 Cr- 12 Ni, LTM/16 Cr- 14 Ni-2 Mo). It was possible to graduate a scale of resistance to pitting and crevice corrosion in neutral chloride solutions at 40 C; in particular the two experimental austenitic stainless steels LTM/18 Cr- 12 Ni and LTM/16 Cr- 14 Ni-2 Mo are at the same level as the AISI 316 L and 18 Cr-2 Mo-Ti, respectively. An occluded cell was developed and used for determining the critical potential for crevice corrosion (Elocalized corrosion). For the steels under investigation Elocalized corrosion is less noble than Epitting especially for ELI ferritic 18 Cr-2 Mo-Ti and 21 Cr–3 Mo-Ti.  相似文献   

12.
Production and properties of nitrogen alloyed, corrosion resistant steels and special steels with low carbon contents Alloying with nitrogen has favourable influence in particular on the mechanical properties of CrNiMo steels (X 2 CrNiMoN 17 12, materials No. 1.4406, X 2 CrNiMoN 17 13 5, materials No. 1.4439 und X 2 CrNiMoN 22 5, materials No. W.-Nr. 1.4462). This comes to bear when ambient temperature and low temperature strength and toughness are concerned. With respect to the corrosion behaviour the data concerning the effect of nitrogen are contradictory. It has become clear that nitrogen improves pitting corrosion resistance; this applies, however, only to pit initiation but not to pit growth. Stress corrosion cracking is not delayed by nitrogen but different results have been obtained with different media: while the duplex steel X 2 CrNiMoN 22 5 is attacked considerably faster than the corresponding nitrogen-free steel in 42% boiling magnesium chloride solution the time-to-failure of both steels are comparable in 30% boiling MgCl2-solution. The nitrogen alloyed steels can be welded by all known welding procedures, provided fully austenitic welding rods are used.  相似文献   

13.
A mixture of hydrogen peroxide, sulphuric and hydrofluoric acids has been used as pickling solution at pH 2.0 for AISI 316L austenitic stainless steel (SS). The stability of the H2SO4‐HF‐H2O2 mixture is assessed varying the ferric ions content from 0 to 40 g/L, the temperature from 25 to 60°C, and with and without stirring of the pickling solution. The AISI 316L SS pickling rate at 50°C was 2.6 and 0.2 mg/dm2 day (mdd) in the absence and presence of 40 g/L ferric ions, respectively. p‐toluene sulphonic acid (PTSA) has been used as stabiliser of hydrogen peroxide.  相似文献   

14.
Corrosion of stainless steels and nickel-base alloys in solutions of nitric acid and hydrofluoric acid Reactions involving nitric acid may always result in the contamination of this acid with fluorides. In highly concentrated nitric acid, the presence of small amounts of HF will substantially reduce the corrosion of metallic materials. Mixtures consisting of hydrofluoric acid and hypo-azeotropic nitric acid on the other hand will strongly attack: the metal loss will markedly increase with increasing HNO3 and HF concentrations as well as with rising temperatures. The investigation covered 12 stainless steel grades and nickel-base alloys. With constant HNO3 content, corrosion rates will rise linearly when increasing the HF concentration. With constant HF concentration (0.25 M), corrosion rates will increase rapidly with increasing nitric acid concentration (from 0.3 M to 14.8 M). This can best be described by superimposing a linear function and a hyperbolic function that is reflecting the change in the HNO3 content. Alloys containing as much chromium as possible (up to 46 wt.%) will exhibit the best corrosion resistance. Alloy NiCr30FeMo (Hastelloy alloy G-30) proved to be well suitable in this investigation.  相似文献   

15.
Pitting and crevice corrosion of stainless steels in chloride solutions In practice stainless steels in chloride containing waters are found to be susceptible to crevice corrosion and pitting. Corrosion tests were carried out on AISI 304 L stainless using a simulated crevice and the compositions of the electrolyte in the crevice determined. Long term potentiostatic tests were used to determine the critical potentials for crevice corrosion (US), for various steels in sodium chloride solutions at different concentrations and temperatures. The steels studied were 22 CrMo V 121, X 22 CrNi 17 and AISI 304 L. Like the critical pitting potential (UL), US was found to have a strong dependence on the chloride content of the external solution. At higher concentrations the two potentials were similar. At lower concentrations the US was lower than UL. The knowledge of these critical potentials together with well known rest potentials for a steel in an electrolyte of known concentration, allows conclusions to be drawn about its susceptibility to pitting and crevice corrosion. The method is suitable also for other passive metals.  相似文献   

16.
Stress corrosion cracking of austenitic chromium-nickel stainless steels at ambient temperature For the chloride-induced SCC with transgranular crack path in austenitic 18Cr10Ni stainless steel, a critical temperature between 45 and 50°C exists. This critical temperature, however, is valid only for the passive state of the steel in nearly neutral, chloride-containing aqueous environments. In the active state, SCC with transgranular crack mode can occur at temperatures down to ambient temperature. The active state is caused by highly acidic, high-chloride containing aqueous corrosive media. Adherent aqueous films with these properties can grow on the surface of structural components inside swimming-pools when the water is disinfected by addition of chlorine. Under these conditions, failure of austenitic CrNi and CrNiMo stainless steels by SCC with transgranular crack path at ambient temperature is possible and actually occurred. SCC with preferentially intergranular crack path can also occur at ambient temperature when austenitic stainless steels with a sensitized microstructure are used. Under these conditions, the corrosion attack is caused by non-specific aggressive environments, e.g., adherent aqueous films not containing chloride ions. The crack mode, intergranular or mixed, depends on the stress level.  相似文献   

17.
Influence of surface conditions on the resistance of stainless austenitic bromium nickel steels to transcrystalline stress corrosion Grinding weld seams may result in an increased susceptibility to stress corrosion cracking of the areas treated in that way. This susceptibility may be eliminated by an ultimate pickling step; the thickness of the layer to be removed is 0.15 to 100 μm, depending on surface roughness. The susceptibility to stress corrosion cracking of the ground zones can be determined, however, only in the boiling 42% MgCl2-solution; no stress corrosion cracking could be produced in solutions containing from 10 to 3O% MgCl2 or 10 to 2O% and even 40% CaCl2. Another possibility to eliminate stress corrosion cracking susceptibility is an ultimate sand blasting which produces compressive residual stresses in the ground surface.  相似文献   

18.
Investigations into the corrosion behaviour of stainless steels in phosphoric acid in dependence on the chloride and fluoride contents and a heat-treatment during welding In the present investigation the corrosion behaviour of recently developed high-alloyed austenitic (X 2 NiCrMoCU 25 20) and austenitic-ferritic (X 2 CrNiMoCuN 25 5) steel has been tested towards phosphoric acid, the composition and concentration of which was adjusted to correspond to crude phosphoric acid with varying contents of Cl?, F?, Fe3+, and SO3. Current density-voltage curves were recorded on steel test-specimens at room temperature, 45°C, and 80°C. In addition, test-pieces of both steels, after annealing treatment between 800°C and 500°C, as well as welded specimens of similar type were examined for the effect of heat input and consequent structural alterations on the corrosion behaviour. Both steels exhibit good corrosion resistance towards pure phosphoric acid. Cl? and F? ion impurities render the acid more aggressive. Austenitie-ferritic steel reacts more sensitively than austenitic steel towards heat input, resulting in deterioration in corrosion resistance. This may be attributed to the precipitation of inter-metallic phases in the ferritic structure.  相似文献   

19.
Following the success of forming a carbon S-phase (expanded austenite) surface layer on medical grade Ni-free austenitic stainless steel by DC plasma carburising, the established commercial carburising process Kolsterising® was performed on both Ni-containing (AISI 304) and Ni-free austenitic stainless steels. While the Ni-containing stainless steel responded very well to Kolsterising®, the Ni-free alloy did not. The carbon absorption and the hardness of the Kolsterised® Ni-free alloy are inferior to Kolsterised® AISI 304 Ni-containing stainless steel, however, the hardness of the untreated Ni-free alloy was doubled by Kolsterising®. The response of both Kolsterised® Ni-free and Ni-containing alloys to pitting, crevice corrosion and intergranular corrosion resistance was similar. From this work it can be concluded that the Kolsterised® austenitic stainless steels do not suffer from intergranular corrosion but are susceptible to intragranular pitting when tested in boiling sulphuric acid and copper sulphate solution. It was also observed that Kolsterising® improves significantly the pitting and crevice corrosion resistance of the alloys used in this study.  相似文献   

20.
Phosphoric acid concentration (5–85%) effects on the corrosion behaviour of austenitic Fe–18Cr–12Mn–N steel have been studied by potentiodynamic polarisation measurements. After the anodic polarisation, both the film composition and the electronic structure have been investigated by X-ray photoelectron spectroscopy. The specimen surface examinations have been carried out by scanning electron microscopy. The results of the corrosion behaviour of the steel at issue have been compared to those relevant to two trademark materials [austenitic stainless steels AISI 304 (Fe–18Cr–9Ni) and X14AΓ15 (Fe–14Cr–15Mn–N)] and developed under the same test conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号