首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用数值方法求解绕方形截面纤维流场,考虑粒子布朗扩散、拦截效应和惯性碰撞捕集机理的联合作用,用布朗动力学方法研究方形截面纤维的过滤性能,考察了纤维迎风角(θ)、填充率(C)和过滤风速(u?)对捕集效率、质量因子及粒子沉积分布的影响。结果表明,小粒子的扩散捕集或大粒子的惯性捕集在方形纤维表面的粒子沉积行为均表现出显著的局部沉积特征,且与粒子捕集机理和迎风角有关。方形纤维质量因子的分析结果表明,在高填充率下,方形纤维的过滤压降虽高于圆截面纤维,但具有较高的捕集效率,综合过滤性能仍明显优于圆截面纤维,但在低填充率下,方形纤维综合过滤性能劣于圆截面纤维。  相似文献   

2.
The gas‐solid two‐phase flows in fibrous filters were simulated by computational fluid dynamics (CFD) technology. The pressure drops and filter efficiencies with different operating conditions and geometry parameter, including face velocity, particle size, and solid volume fraction (SVF) were calculated. The effects of the operating conditions and geometry parameter on the filter performance of the fibrous filter were obtained. The results indicate that the pressure drop increases linearly with the face velocity and the predicted values of the pressure drops are in excellent agreement with the experimental correlation. Filtration efficiency decreases with the face velocity for submicrometer particles (0.1 μm) and, for larger particles (1 μm) the tendency is just the opposite. The filtration mechanism is different for different particle sizes. For the filter in this paper, when the particle size is smaller than 0.2 μm, Brownian diffusion plays a significant role in the filtration process. When the particle size is greater than 0.5 μm, inertial impaction becomes an important capture mechanism. For particle sizes in the range of 0.2–0.5 μm, the Brownian diffusion and inertial impaction are both relatively weak and, therefore, the filtration efficiency has the least value in this range. Additionally, the SVF distribution is an important geometry parameter in the filter. The filtration efficiency of the filter with a decreased SVF (geometry B) along the thickness of the filter is higher than that of the filter with the even SVF (geometry A), while maintaining a low pressure drop.  相似文献   

3.
4.
大部分纤维捕集效率和压降的理论模型认为纤维性能仅取决于来流速度、颗粒粒径、纤维体积分数、过滤层厚度、纤维直径等因素。实际上,布袋除尘器的性能还与纤维配置方式直接相关。利用LB(lattice Boltzmann)两相流模型对多层纤维捕集颗粒物过程进行了数值模拟,研究了不同纤维配置方式下系统压降与捕集效率的变化。结果表明,错列纤维的性能参数优于并列纤维;纤维排列间距增大,压降增幅大于捕集效率,导致性能参数下降。通过比较不同位置纤维的捕集能力发现,在布朗扩散和拦截捕集机制主导下,前方纤维捕集能力略强于后方纤维;而在惯性碰撞捕集机制主导时,对捕集贡献最大的主要是前两排纤维,后方纤维对捕集效率的贡献非常小,可以忽略。这些研究结果可以对布袋除尘器的多层纤维配置方式的优化提供理论依据和工程建议。  相似文献   

5.
Room air filters, which usually closely resemble high-efficiency particulate air (HEPA) filters, should be designed to maximize the clean air delivery rate (CADR) rather than operate at the very high collection efficiencies and relatively high pressure drops associated with HEPA filters. That is, for fixed electrical energy consumption, filters should remove the most particles possible. This can be accomplished by designing room filters that operate at lower collection efficiencies and higher airflow rates than HEPA filters. Based on filtration theory, the CADR of a fibrous filter is maximized with respect to filter thickness and air velocity at fixed energy consumption and filtration area. For very small particles for which diffusional deposition is the predominant collection mechanism, it is shown that a filter thickness resulting in a collection efficiency of 82% is optimal. For somewhat larger particles having diameters close to the filter's most penetrating size, direct interception is included in the analysis. The importance of inertial impaction and electrostatic deposition is also considered. This article supports the belief that room air filters used for enhancing indoor air quality can be improved significantly and suggests a methodology to accomplish this improvement.  相似文献   

6.
基于随机多层纤维过滤介质算法建立褶式滤芯三维拟态化结构模型,对褶式滤芯内部气-固两相流动进行数值模拟,计算不同运行参数及结构参数下滤芯的压力损失及过滤效率,并与文献计算值进行比较. 结果表明,压力损失随过滤风速增大呈线性增加;随褶尖角增大,压力损失呈先减小后增加,压力损失计算值与文献计算值吻合较好. 褶尖角和过滤风速一定时,过滤效率随粒径增加先减小后增大,在给出的颗粒直径范围内存在最易穿透颗粒直径(MPPS). 不同过滤风速下,当颗粒粒径小于0.5 mm时,扩散作用使过滤效率随过滤风速增加而减小;大于0.5 mm时,惯性作用使其随过滤风速增加而增加;MPPS随风速增加而减小;本计算值与文献计算值趋势一致. 不同褶尖角下,当颗粒粒径小于1 mm时,扩散作用使过滤效率随褶尖角增大而减小;大于1 mm时,惯性作用使其随褶尖角增大而增加.  相似文献   

7.
基于聚四氟乙烯(PTFE)微孔膜滤料扫描电镜(SEM)图像,建立PTFE微孔膜滤料微观结构模型,采用计算流体力学和离散单元法(CFD?DEM)耦合的方法对黏性颗粒在微孔膜滤料表面沉积特性进行模拟,引入液桥力模型,忽略范德华力的作用,统计计算域内颗粒的受力情况,分析了不同表面能条件下3~6 ?m粒径颗粒在微孔膜滤料表面的沉积特性,将模拟结果与黏附效率的经验公式进行对比。结果表明,黏附效率与经验值、颗粒受力与液桥力模型的相对误差均在6%以内,CFD?DEM耦合计算方法可用于模拟不同环境湿度条件下的颗粒沉积;过滤风速、粒径与黏性是影响沉积形态的重要因素,提高过滤风速及增大颗粒粒径与黏性,颗粒更易在滤料表面形成稳定的树突结构,黏附效率及含尘压降增加。环境相对湿度影响两物体间液桥体积,接触力影响颗粒沉积,当增加表面能与液桥体积时,接触力及液桥力均相应增加,根据受力平衡原理,环境相对湿度对颗粒沉积影响很大。  相似文献   

8.
With micron talcum particles and nano-CaCO3 powder as test dust, a series of experiments have been carried out to systematically study the gas filtration and regeneration behavior of polytetrafluoroethylene membrane, and some comparisons were made with common filter media. The experimental results showed that the PTFE membrane had a filtration efficiency of above 99.99% for micron particles, and excellent regeneration behavior was obtained, though a much higher initial pressure drop existed. Based on the results, it was concluded that the PTFE membrane is an excellent surface-filtration media for micron particles. Effects of operation parameters, including airflow velocity, particle concentration and particle characteristics were also investigated. To better understand the evolution of pressure drop during the filtration process, a mathematical model with operation parameters and characteristics of particles was derived from the gas-solid two-phase flow theories. A novel method on the determination of regeneration period of the filter media was put forward based on the analysis of the pressure drop according to this model.  相似文献   

9.
Air filters collect particles by the mechanical collection mechanisms, namely, inertia, interception, gravitational settling, and Brownian diffusion. There exists the most penetrating particle size (MPPS) in submicron size range for which none of the collection mechanisms work effectively. In this study, we propose a new type of filter named as “centrifugal filter,” which collects aerosol particles by centrifugal force together with the conventional mechanical collection mechanisms. The centrifugal filter proposed in the present work may be rotated by a motor or compressed air. Air passes through the filter in the axial direction of filter rotation. The filter rotates so does the air embedded in the filter, and therefore centrifugal force exerts on particles. In addition to the mechanical collection mechanisms, small migration of particles due to the centrifugal force enhanced the collection efficiency of submicron particles significantly without increasing the pressure drop. The performance tests of centrifugal filter were conducted by changing the fiber diameter, the air flow velocity and the rotation speed. We found that the collection efficiency of filter is enhanced significantly by rotating the filter without increasing the pressure drop and that the filter efficiency is well predicted by the conventional filtration theory accounting for the centrifugal force.

Copyright 2015 American Association for Aerosol Research  相似文献   

10.
采用聚结型滤芯气液过滤性能实验装置,研究了油雾加载率和表观过滤速度对折叠滤芯过滤性能的影响及涂覆粘合剂对折叠滤芯过滤性能的优化作用。结果表明,涂覆粘合剂后,滤材抗张力强度明显增大,滤材孔径减小。随油雾加载率增大,滤芯过滤层液体运移通道数增加,通道压降升高。初始压降随表观过滤速度增加而升高。粘合剂主要凝固在渗透性低的区域,压降变化较小。表观过滤速度增加抑制了二次夹带,折叠滤芯过滤效率升高,而由于粘合剂脱落,涂覆粘合剂的滤芯过滤效率下降。表观过滤速度为0.10 m/s时,随油雾加载率增大,聚结在滤材表面的粘合剂抑制夹带,滤芯过滤效率升高。  相似文献   

11.
Electrospinning is a fabrication process that uses an electric field to make polymer nanofibers. Nanofibers have a large specific surface area and a small pore size; these are good properties for filtration applications. In this paper, the filtration characteristics of a Nylon 6 nanofilter made by electrospun nanofibers are tested as a function of the fiber diameter. Nanofilter media with diameters in the range of 100–730 nm can be produced in optimized conditions. The pressure drop of a Nylon 6 nanofilter linearly increases with the increasing face velocity. An electrospun Nylon 6 filter (mean fiber diameter: 100 nm) shows a much lower pressure drop performance relative to the commercial HEPA filter media when the filtration efficiency of the Nylon 6 nanofilter and the HEPA filter are over 99.98% with test particles of 0.02–1.0 μm in diameter. The pressure drop at 5 cm/s of the face velocity is measured as 27 mmAq for the Nylon 6 nanofilter media, and 37.1 mmAq for the HEPA filter media. The particle size with minimum efficiency decreases with the decreasing fiber diameter. And the minimum efficiency becomes greater as the fiber diameter is decreased.  相似文献   

12.
金属丝网过滤器过滤初期阶段压力特性的研究   总被引:1,自引:0,他引:1  
对5μm刚性金属丝网滤筒过滤初期阶段的压力特性,选用高密度聚乙烯粉料进行了实验研究,主要考察过滤速度和入口浓度对滤袋筒压降的影响。实验结果表明在过滤初期阶段滤筒的过滤压降上升趋势很明显,这种压降的增大主要来自于残余压降。滞留在滤筒内的粉尘改变了丝网内部的流道结构,从而导致了滤筒残余压降的不断升高。过滤速度和入口浓度的增加均可使残余压降增大。最后通过压降组成的分析,提出了滤筒总压降的计算模型。  相似文献   

13.
刘宇峰  姬忠礼  陈锋  刘震  常程 《化工学报》2020,71(12):5644-5654
气液聚结元件在压缩气体净化等工业领域应用广泛,目前聚结元件的性能难以满足行业不断增长的需求,但是提高聚结元件过滤效率的同时,阻力也会随之升高,不利于其综合性能的优化。为研制低阻高效的聚结元件,利用不同浓度氟硅氧烷丙烯酸酯溶液对聚结滤材进行疏油改性,分析了表面能不同的滤材在气液过滤过程中压降、过滤效率以及二次夹带现象的变化,并对改性在聚结滤芯上的应用效果进行研究。结果表明,改性滤材在过滤效率提高10%的同时,稳态压降可降低约30%。滤材表面性质变化导致的跳跃压降减小是稳态压降降低的主要原因;滤材内液体分布对扩散、惯性分离作用的增强以及二次夹带的减少是效率提高的主要原因。对于表面能不同的疏油滤材,稳态压降和效率均随表面能的减小而升高。聚结滤芯经过改性后品质因子最大可提高92%。  相似文献   

14.
Gas-liquid coalescing elements are widely used in industrial fields such as compressed gas purification. Currently, the performance of coalescing elements is difficult to meet the growing needs of the industry. However, while increasing the filtration efficiency of the coalescing element, the resistance will increase simultaneously, which is not conducive to the optimization of the comprehensive performance. To develop low-resistance high-efficiency coalescing elements, the coalescing filter materials are modified by different concentrations of fluorosilicone acrylate solution. The evolution of pressure drop, filtration efficiency and secondary entrainment of the filter materials with different surface energy during the gas-liquid filtration process were analyzed, the modified filter materials were fabricated into coalescing filters for verification. The results showed that, the filtration efficiency of the modified filter materials was increased by approximately 10%, and the steady-state pressure drop was reduced by approximately 30%. The decrease in jump pressure drop caused by changes in the surface properties of the filter materials is the main cause of the decrease in steady-state pressure drop. The increase in filtration efficiency is caused by the enhancement of diffusion and inertial separation, and the reduction of secondary entrainment. For oleophobic filter materials with different surface energy, the pressure drop and filtration efficiency increase with the decrease of surface energy. The quality factor of the coalescing filter element can be increased by up to 92% after modification.  相似文献   

15.
A mathematical model for the filtration of dust in granular filters under the influence of a Coulombic force is developed. The paper considers the effect of filter porosity and external field orientation on the filtration efficiency of inertialess, inertial, and diffusional aerosols. Calculated filtration efficiencies may be used to design electrostatically enhanced granular filters.  相似文献   

16.
A fibrous filter is a common cleaning device often used to remove particle from industrial gas streams. The main question that often arises concerns the evolution of the pressure drop and the filtration efficiency during the filter clogging. The increase of pressure drop and filter efficiency was measured and was linked to both the clogging degree inside the filter bed and the deposit structure observed thanks to scanning electron micrograph. We have also studied the influence of various parameters such as air velocity, particle size, aerosol concentration and filter main characteristics. An empirical equation for predicting the pressure drop across the filter as a function of inverse particle diameter and Cunningham correction factor was suggested without considering the particle density in the cellulose paper filter. The values of porosity, obtained from the pressure drop responses of loading in the paper filter using Rudnick and First equation, were compared with other researchers.  相似文献   

17.
We have developed new high efficiency particulate absorbing filter materials by bonding the fiber web with the help of high pressure water jets emerging from micron sized nozzles and subsequently coating the filters with a chemical binder. Two different types of nonwoven filters are produced by varying the water jet pressure during the bonding process. The performance characteristics of the filter materials are evaluated in terms of filtration parameters, such as filtration efficiency, dust holding capacity, and pressure drop. Filtration efficiency depends on the pore characteristics, namely pore size and their distribution in the filters. The developed filter materials have shown promising performance characteristics by capturing higher amount of dust particles with a relatively low pressure drop during use. These filter materials can be used for a wide range of industrial applications, where high filtration efficiency is required at low energy consumption. A fluid flow simulation is carried out by computational fluid dynamics (CFD) to understand flow pattern during the bonding process. The CFD is also used to predict the pressure drop in the nonwoven filter materials during filtration process. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
《分离科学与技术》2012,47(12):1723-1746
ABSTRACT

Simulation of cake formation of mono-sized and dual-sized particles under gravitational sedimentation and filtration is presented. The dynamic analysis proposed by Lu and Hwang in 1993 is applied to examine the local cake properties formed under a falling head by considering the hindered settling effect of particles in the slurry and the variation of the pressure drop across the filter septum. Results of this study show that, at a given position in a cake, the solid compressive pressure reaches a maximum value and then decreases for a gravity filtration due to the decrease in the driving head. A cake constructed with dual-sized particles has a more compact structure than does one with mono-sized particles, and larger particles will form looser packing than will smaller ones for mono-sized particles. A dual-dispersed suspension with a lower fraction of large particles will result in the lowest cake porosity and the highest specific filtration resistance of cake. Comparison of the porosity distribution in filter cake formed by means of gravity filtration and constant head filtration shows that the porosity near the filter septum of gravity filtration has a convex behavior while that of constant head filtration has a tendency toward concavity. This discrepancy is mainly due to the change in the driving head during the filtration process. Both theoretical and experimental results show that the uniformity of particle size distributions in the filter cake will be much better when the relative settling velocity between large and fine particles is reduced.  相似文献   

19.
Electret filters are composed of thin, electrically charged fibers that are often utilized in industrial fields that require high collection efficiency with low flow resistance. A bundle-type electret filter in the Mechanical Ventilation and Air-Conditioning (MVAC) system of a Metro-subway was characterized in this study. The particle penetration and pressure drop parameters were examined under a filtration velocity ranging from 0.5 to 2.5 m/s. Particle penetration increased significantly in the early stages of filtration, but then became steady. The filter quality, which is a useful index of the filtration performance incorporating pressure drop and filtration efficiency, was evaluated for the test filters. The fiber bundle filter demonstrated a higher filter quality than the mechanical filter or the general panel-type electret filter with a small drop in pressure even at a high filtration velocity. In addition, the three dimensional structure and high electrostatic charge of the fiber bundle filter would enable a long retention time and constant level of pressure drop throughout the filtration.  相似文献   

20.
A theoretical model is developed capable of predicting aerosol penetration through glass fibre filters. The filter is described as an assembly of pores which conduct the flow. Some of the aerosol particles, the interception fraction, move along with the tortuous flow; the remainder, the inertial fraction, pursue their paths through the filter along straight lines until they are re-entrained in the flow. Of the interception fraction of particles, a part is captured as a result of pure interception, a part due to an increase of interception by both inertia and diffusion, and the rest by pure diffusion. From the inertial fraction of particles, part is captured due to pure inertia, part due to inertial interception and part due to inertial diffusion. The final expression for the penetration does not contain any adaption parameter, only directly assessable parameters related to flow-, filter-, fibre- and particle properties. The final relation has been tested experimentally, by varying particle diameter, face velocity, porosity fibre diameter, and filter composition. Theory and experiment appear to be in good agreement. A suggestion is made for optimal filter design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号