首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the challenging prospect of developing new materials by mixing different polymers to reach a synergetic performance, the present research focuses on the study of the miscibility of two polymers: The acrylonitrile butadiene styrene (ABS) composed of a dispersed elastomeric (polybutadiene rubber) polymer embedded in a SAN thermoplastic matrix, and the polycarbonate (PC). It shall be noted that obtaining miscible polymer blends is often a difficult task because of the large size of their molecular chains and the high interfacial tension between the polymer phases. Until now, the most numerous researches developed in this field involve polymer blends obtained by compatibilization techniques in order to improve the interfacial adhesion between initial polymers. The aim of this work is to study the miscibility between ABS and PC. First, two different methods were used to mix the polymers: the twin‐screw extrusion and the dissolution in a common solvent tetrahydrofuran (THF). Then, physicochemical, microscopic observation and rheological characterization were performed on samples of mixtures obtained by both extrusion processing and dissolution method. The measurement of glassy transition temperature (Tg) by differential scanning calorimetry measurements (DSC) and dynamical mechanical thermal analysis (DMTA) have shown a partial miscibility between the two polymers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44975.  相似文献   

2.
The miscibility evolution of polycarbonate/polystyrene (PC/PS) blends during the compounding process in three blending methods of industrial relevance, namely melt blending, remelt blending in a twin‐screw extruder and third melt blending in an injection molding machine, was investigated by measuring their glass transition temperatures (Tg) and their specific heat increment (ΔCp). Differential scanning calorimetry (DSC) was used to examine nine blend compositions. Shifts in glass transition temperature (Tg) of the two phases in melt‐mixed PC/PS blends suggest partial miscibility of one polymer in the other. The observed solubility strongly depends on blend composition and blending method. The Tg measurements showed maximum mutual solubility around 50/50 composition. The miscibility of PC/PS blended after the third stage (melt injection molding) was higher than that after the first stages (melt extrusion) and the second stages (remelt extrusion).  相似文献   

3.
Lignophenol (LP)‐graft‐poly(2‐ethyl‐2‐oxazoline) (POZO) was prepared to reuse lignin, an industrial waste material, and to produce novel LP‐based polymer blends with poly(vinyl chloride) (PVC), poly(bisphenol A carbonate) (PC), polyvinylpyrrolidone (PVP), and polystyrene (PSt) as commodity polymers. The resulting graft polymer was soluble in various types of organic solvents such as chloroform, THF, acetone, and methanol, unlike LP. The miscibility of LP‐graft‐POZO with commodity polymers was measured by differential scanning calorimetry (DSC) to determine the glass transition temperatures (Tg). In the cases of the blends of LP‐graft‐POZO with PVC, PC, and PVP, the Tg values decreased during the second scan. Moreover, in the cases of the blends with PVC and PVP, the Tg values were not detected during the third scan. Therefore, it was inferred that LP‐graft‐POZO was miscible with PVC, PC, and PVP while forming single phases; in particular, the blends of LP‐graft‐POZO with PVC and PVP exhibited a secondary miscibility because the Tg values were not detected. Furthermore, the blend of LP‐graft‐POZO with PC exhibited better thermostability than LP and LP‐graft‐POZO. These results indicated that LP blended with POZO could be used as a polymer additive and as an adhesive to combine different polymers, organic–inorganic polymers, etc. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Miscibility studies on blends of polycarbonate (PC) and poly(phenyl methacrylate) (PPMA) were undertaken by means of differential scanning calorimetry (DSC), dynamic mechanical, and dielectric relaxation methods. PC and PPMA were mixed by dissolving in tetrahydrofuran (THE) and subsequently coprecipitated in methanol. DSC studies showed a single glass transition (Tg) that shifts systematically with composition. These Tgs are reproducible in repeated DSC heating cycles, suggesting true miscibility of the pair. The dry PC and PPMA pellets were melt mixed in a Mini-Mixer/Molder. The extrudates were compression molded. These melt-mixed PC/PPMA blends exhibited glass like transparency and also showed a single Tg in the DSC scans. The true miscibility of PC and PPMA was further confirmed by dynamic mechnaical and dielectric relaxation methods. The net birefringence has been reduced substantially because of the opposite sign of the itrinsic birefringence of PC and PPMA molecules. At the 12/88 PC/PPMA, the birefringence remains zero at all draw ratios, indicating the achievement of birefringence free polymer alloys.  相似文献   

5.
The miscibility of poly(vinyl chloride)/poly(methylmethacrylate) (PVC/PMMA) system was improved by introducing some pyrrolidone units into the main chains of PMMA. For that purpose, we have synthesized two copolymers of poly(methylmethacrylate‐co‐vinylpyrrolidone) (MMVP) through a radical polymerization and carried out a comparative study of PVC/MMVP blends by inverse gas chromatography (IGC) and differential scanning calorimetry (DSC) methods. The adequacy of seven n‐alkane probes has been tested to determine the thermodynamic parameters. The miscibility of the two systems has been proved by a single Tg for each blend. This observation was also confirmed by DSC analysis. To highlight the presence of interaction and its intensity between PVC and MMVP in the blends, the polymer–polymer interaction parameters have been evaluated by IGC trough which the influence of the solute has been resolved. The Schneider approach confirmed the miscibility of these systems as the K deviates positively from unity. The miscibility has been appeared highlighted from the positive difference in surface energy between the pure polymers and their blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
The “miscibility” and esterification in poly(styrene-co-maleic anhydride) (PSTMA)/phenoxy blends were investigated by DSC and FTIR. The blends prepared by casting exhibited a single composition-dependent but broad Tg during the first scanning. The broadness of the Tg transition range is due to the presence of microphases in the blends, which acquired some stability because of the hydrogen-bonding interactions with the continuous phase. However, the blends displayed two distinct Tgs during the second scanning, which can be attributed to phenoxy-rich and PSTMA-rich phases dispersed one in another at a scale larger than the initial one. To investigate the effect of esterification, the samples subjected previously to two scannings have been additionally heat-treated several times between 30 and 220°C and annealed each time at 220°C for increasing periods of time. During the additional scannings, the two Tgs identified during the second scanning increased with increasing annealing time but remained distinct. The fact that the fraction soluble in tetrahydrofuran decreased with increasing annealing time indicates that crosslinking due to esterification has occurred in both phases. The two phases generated after the first scanning were stabilized by the esterification reaction at the interfaces. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:913–919, 1998  相似文献   

7.
Blends of polyamide 6 (PA6) and polycarbonate (PC) have been investigated, over a full range of composition, to check interactions between them. SEM observations show that the mixtures are characterized by domains of clearly segregated homophases and voids between the two polymers. DSC and DMTA data indicate the presence of two Tg' s, corresponding to two separate phases, with the Tg of the PC phase decreasing on increasing the PA6 amount. Moreover, the crystallization kinetics of PA6 is slightly showed down by the PC. Chemical reactions between the two polymers are supposed to give rise to low molar mass compounds, as shown by GPC; these species plasticize the PC and partially dissolve into the molten polyamide, causing decrease of PC Tg and reduction of overall crystallization rate of PA6. Apparent influence of PC on melting temperature and enthalpy of PA6 is also discussed.  相似文献   

8.
The glass transition temperatures (Tg) of blends of polyacrylic acid (PAA)–Nylon 6 in various proportions used as membrane material in pervaporation separation of acetic acid–water and ethanol–water mixtures were determined using differential scanning calorimetry (DSC). All the samples examined showed a single Tg which lay between the Tg of Nylon 6 and PAA, indicating that complete miscibility was achieved in these polymer blends. Further evidence of complete miscibility was obtained by scanning electron microscopy (SEM) of cross sections of the blended films which showed a uniform structure. An interesting phenomenon was observed during the DSC measurements which showed a shift in Tg of the blended samples with scanning time. Infrared and thermogravimetric measurements were conducted to further investigate this phenomenon and the results were explained as the change in Tg being caused by the elimination of water molecules and the formation of anhydrides in the polyacrylic acid portion of the polymer blends.  相似文献   

9.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMAs) (designated as iPMMA, aPMMA, and sPMMA) were mixed with poly(styrene‐cop‐hydroxystyrene) (abbreviated as PHS) containing 15 mol % of hydroxystyrene separately in 2‐butanone to make three polymer blend systems. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the miscibility of these blends. The three polymer blends were found to be miscible, because all the prepared films were transparent and there was a single glass transition temperature (Tg) for each composition of the polymers. Tg elevation (above the additivity rule) is observed in all the three PMMA/PHS blends mainly because of hydrogen bonding. If less effective hydrogen bonding based on the FTIR evidence is assumed to infer less exothermic mixing, sPMMA may not be miscible with PHS over a broader range of conditions as iPMMA and aPMMA. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 431–440, 1999  相似文献   

10.
Ternary polymer blends were obtained by melt mixing, mixing up to 30% poly(butylene terephthalate) (PBT) with polycarbonate (PC) and phenoxy in an attempt to improve the miscibility of the PC/phenoxy binary blend. Although most of the blends with a PBT content higher than 10% appear as transparent, two Tg's appeared at all the blend compositions. These Tg's correspond to PC-rich and phenoxy-rich phases where a low amount of the main component of the other phase and all PBT are dissolved in amounts that are a function of the PC/phenoxy ratio of the blend. Increasing the PBT contents in the blends closes to linearity the torque versus composition plot, so that a relationship between miscibility level and viscosity exists in these blends.  相似文献   

11.
Blends of polycarbonate (PC) and acrylonitrile ‐ ethylene‐propylene‐diene‐styrene (AES) were reactive compatibilized by styrene‐maleic anhydride copolymers (SMA). The changes in phase morphology and interfacial characteristics of the blends as a function of maleic anhydride content of SMA and the concentration of compatibilizer have been systematic studied. The occurrence of reaction between the terminal hydroxyl groups of PC and the maleic anhydride (MA) of compatibilizer was confirmed by fourier transform infrared (FTIR) spectroscopy. A glass transition temperature (Tg) with an intermediate value between Tg(AES) and Tg(PC) was found on differential scanning calorimeter (DSC) curves of PC/AES blends compatibilized with SMA contains high levels of MA. Furthermore, at lower compatibilizer content, increase of the compatibilizer level in blends result in decreasing gap between two Tgs corresponding to the constituent polymers. Small angle X‐ray scattering (SAXS) test results indicated that compatibilizer concentration for the minimum of blend interface layer's thickness was exactly the same as it was when compatibilized PC/AES blend exhibited optimal compatibility in DSC test. The observed morphological changes were consistent well with the DSC and SAXS test results. A new mechanism of interfacial structural development was proposed to explain unusual phenomena of SMA compatibilized PC/AES blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42103.  相似文献   

12.
The miscibility and crystallization kinetics of the blends of random poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(HB‐co‐HV)] copolymer and poly(methyl methacrylate) (PMMA) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that P(HB‐co‐HV)/PMMA blends were miscible in the melt. Thus the single glass‐transition temperature (Tg) of the blends within the whole composition range suggests that P(HB‐co‐HV) and PMMA were totally miscible for the miscible blends. The equilibrium melting point (T°m) of P(HB‐co‐HV) in the P(HB‐co‐HV)/PMMA blends decreased with increasing PMMA. The T°m depression supports the miscibility of the blends. With respect to the results of crystallization kinetics, it was found that both the spherulitic growth rate and the overall crystallization rate decreased with the addition of PMMA. The kinetics retardation was attributed to the decrease in P(HB‐co‐HV) molecular mobility and dilution of P(HB‐co‐HV) concentration resulting from the addition of PMMA, which has a higher Tg. According to secondary nucleation theory, the kinetics of spherulitic crystallization of P(HB‐co‐HV) in the blends was analyzed in the studied temperature range. The crystallizations of P(HB‐co‐HV) in P(HB‐co‐HV)/PMMA blends were assigned to n = 4, regime III growth process. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3595–3603, 2004  相似文献   

13.
The long‐term properties of bonds are those that are of special interest. To achieve good bonds, the wood polymers and the adhering polymers must be compatible. This paper describes studies of the interaction of wood (Pinus sylvestris) with commercial polyvinyl acetate (PVAc) glue, polymethylmethacrylate (PMMA), and a more hydrophilic acrylate. Interaction was studied with a dynamic mechanical thermal analyzer (DMTA) operating in tensile mode in the tangential direction of wood. DMTA results were correlated with scanning electron microscopy (SEM) fractography studies of adhesion between polymers and wood on a cell wall level. The hypothesis put forward is that a good adhesion on the cell wall level results in a decrease in the glass transition temperature (Tg) measured with DMTA. A decrease in Tg for the hydrophilic acrylate was shown when it was impregnated in wood. The decrease of Tg was correlated with good adhesion to wood on the cell wall level. For PVAc and PMMA no decrease in Tg was measured when glued or impregnated in wood. SEM study also showed that the adhesion on a cell wall level was poor. The results show that DMTA can be a useful technique to study adhesion between wood and glue on a molecular level. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3009–3015, 2004  相似文献   

14.
Blends of chlorinated polyethylene (CPE) elastomer and ethylene methacrylate copolymer (EMA) in various compositions were studied for their compatibility using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Fourier transform infrared (FTIR) spectroscopy techniques. Irrespective of measurement techniques used, all blends showed a single glass transition temperature (Tg) lying in between the Tg of control polymers in both DSC and DMA. Glass transition temperatures of blends obtained from DSC were in consistency with Couchman–Karasz equation. Also, the Tg obtained from both DSC and DMA are above the “rule of mixing” line of the two control polymers. These results from thermal analysis clearly indicate some compatibility between the two polymers. Furthermore, compatibility of CPE/EMA blends were also been investigated by FTIR spectroscopy and scanning electron microscopic analysis. A shifting of characteristic C? Cl stretching peak of CPE and C?O stretching peak of EMA toward lower wave number indicate the presence of specific interaction between the two polymers. Mechanical properties like tensile strength, modulus at 100% elongation, elongation at break, and hardness were observed above the line of additivity drawn between the two control polymers, which corroborate compatibility between CPE and EMA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40316.  相似文献   

15.
The phase behavior of ternary blends made of poly(epichlorohydrin) (PECH), poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA) has been investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). DMTA measurements have been shown to be more sensitive than DSC for the detection of a second phase, for the determination of the composition of each phase, and the distribution of PECH in each of them. About 70% PECH was required to obtain a single narrow Tg in the ternary system, which suggests a single homogeneous phase in the limit of sensitivity of DMTA. This study also emphasizes the importance of the composition of the immiscible polymer pair (i.e. the PVAc/PMMA pair in the PECH/PVAc/PMMA system), in addition to the thermodynamic interaction parameters, for controling the phase behavior of ternary systems.  相似文献   

16.
The article discusses the influence of the oligomeric resin, hydrogenated oligo(cyclopentadiene) (HOCP), on the morphology and properties of its blends with isotactic poly(1-butene) (PB-1). PB-1 and HOCP are found to be partially miscible in the melt state. Solidified PB-1/HOCP blends contain three phases: (1) a crystalline phase formed by PB-1 crystals; (2) an amorphous PB-1-rich phase; and (3) an amorphous HOCP-rich phase. The optical micrographs of the solidified blends show a morphology constituted by microspherulites and domains of the HOCP-rich phase homogeneously distributed in the intraspherulitic region. DSC and DMTA results show two glass transition temperatures (Tg), different from the Tg values of the plain components. The lower Tg is attributed to the PB-1-rich phase, and the higher Tg, to the HOCP-rich phase. The tensile properties were investigated at 25 and 80°C. At 25°C, the PB-1-rich phase is rubbery and the HOCP-rich phase is glassy, so the addition of HOCP to PB-1 arouses a noteworthy hardening of the samples and this brings an increase of the Young's modulus, E′ (although the blend crystallinity lessens), and decreases of stresses at yielding point (σy) and at rupture (σr). The 90/10 and 80/20 blends show high values of elongation at rupture (εr). At 80°C, the blends show decreases of E′ and σr values with the HOCP content. These decreases are attributed to the rubbery state of the phases and reduction of the blend's crystallinity. At 80°C, all the blends show a high value of εr. This phenomenon is attributed to the fine-size domain dispersion of the phases and to sufficient densities of tie molecules and entanglements. Finally, the partial miscibility behavior proposed in this article is compared with the miscibility hypothesis reported elsewhere. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1369–1381, 1998  相似文献   

17.
Abstract

Transparent films of bisphenol-A-polycarbonate (PC), poly (methyl methacrylate) (PMMA) microspheres and their blends at various compositions were prepared by solution casting using methylene chloride (MC) as a solvent. The structural, morphological and thermal properties were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry and thermogravimetric analysis. It was obvious that all the characteristic absorption bands could be found in the IR spectra of PC/PMMA blends, but different in the strength. From the SEM images, a co-continue morphology was observed in the PC/PMMA blends when the PMMA content was above 80wt%, indicating the existence of special interaction between PC and PMMA microspheres. Differential scanning calorimetry results showed a single glass transition temperature (Tg) only for 10%PC/90%PMMA blends because of the better dissolution of PC in PMMA than PMMA in PC. Thermogravimetric analysis thermograms showed that the thermal stability of PC/PMMA blends increased with increasing PC content, which was due to the better thermal stability of PC.  相似文献   

18.
Poly(trimethylene terephthalate) (PTT)/polycarbonate (PC) blends with different compositions were prepared by melt blending. The miscibility and phase behavior of melt-quenched and cold-crystallized blends were studied using differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy. The blends of all compositions display only one glass transition (T g ) in both states. The melting temperature and the crystallinity of PTT in the blend decrease with increasing PC content. The dielectric results for the melt-quenched blends, for PC content up to 60 wt.%, exhibited two merged relaxation peaks during the heating scan; the lower temperature relaxation peak represent the normal glass-transition (α) relaxation of the mixed amorphous phase and the higher temperature relaxation due to the new-constrained mixed amorphous phase after crystallization. Cold-crystallized blends displayed only one glass transition α-relaxation whose temperatures varied with composition in manner similar to that observed by DSC. The dielectric α-relaxation of cold crystallized blends has been analyzed. Parameters relating to relaxation broadening, dielectric relaxation strength, and activation energy were quantified and were found to be composition dependent. The PTT/PC blends could be considered as two-phase system, a crystalline PTT phase and a mixed amorphous phase consisting of a miscible mixture of the two polymers. However, the crystallinity was only detected for blends containing greater than 40 wt.% PTT.  相似文献   

19.
Two types of wax were added to a ethylene vinyl acetate (EVA) copolymer/aromatic hydrocarbon resin (tackifier) blend in the molten state and the miscibility, viscoelastic and adhesion properties of ternary blends as hot-melt adhesives (HMAs) were investigated. Miscibility and viscoelastic properties were studied using differential scanning calorimetry (DSC), Brookfield viscometry and dynamic mechanical thermal analysis (DMTA), and their adhesion strength was determined in terms of single lap shear strength. DSC thermograms of both types of waxes showed their melting peaks in a similar region to that of EVA/tackfier blend. It was difficult to evaluate the miscibility of ternary blends using DSC because the melting peaks of the waxes overlapped with those of the EVA/tackifier blend, although the glass transition temperature (T g) of the ternary blend systems slightly increased with increasing wax concentration. However, their storage modulus (E′) increased slightly and loss tangent (tan δ) showed different peaks when two types of wax were added to the EVA/tackifier blend. Therefore, the miscibility of EVA/tackifier blend altered with addition of waxes. In addition, their melt viscosity decreased with increasing wax concentration. Furthermore, the adhesion strength of the ternary blends decreased with increasing wax concentration, despite the increment of storage modulus. These results suggested that the ternary blends of EVA/tackifier/wax were heterogeneous.  相似文献   

20.
The aim of this study is to improve the performance of blends made from recycled polyvinyl chloride (PVC), coming from credit card waste, so that these blends can be used for those applications that must fulfil some requirements with regard to mechanical properties and stability with temperature alterations. With this aim in mind, two polymers of styrenic origin have been combined: styrene acrylonitrile (SAN) and acrylonitrile butadiene styrene (ABS). These polymers are characterized by a satisfactory balance of mechanical properties and thermal stability. PVC blends with both virgin and recycled styrenic polymers have been studied throughout the entire range of compositions. The prior degradation of the recycled materials has been studied by means of Fourier transformed infrared spectroscopy (FTIR).The behavior of the observed Tg values has been analyzed using differential scanning calorimetry (DSC), and the existence of partial miscibility between the different components has been studied. The mechanical properties have been determined using tensile and Charpy impact tests. The thermal stability of the PVC blends with temperature changes has been determined using the Vicat softening temperature (VST). Finally, the fracture surface of the various blends has been analyzed using scanning electron microscopy (SEM). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2464–2471, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号